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Abstract

Facial appearance can be altered, not just by restyling but also by sensory processes. Exposure to a
female face can, for instance, make subsequent faces look more masculine than they would
otherwise. Two explanations exist. According to one, exposure to a female face renormalizes
face perception, making that female and all other faces look more masculine as a consequence—a
unidirectional effect. According to that explanation, exposure to a male face would have the
opposite unidirectional effect. Another suggestion is that face gender is subject to contrastive
aftereffects. These should make some faces look more masculine than the adaptor and other faces
more feminine—a bidirectional effect. Here, we show that face gender aftereffects are bidirectional,
as predicted by the latter hypothesis. Images of real faces rated as more and less masculine than
adaptors at baseline tended to look even more and less masculine than adaptors post adaptation.
This suggests that, rather than mental representations of all faces being recalibrated to better
reflect the prevailing statistics of the environment, mental operations exaggerate differences
between successive faces, and this can impact facial gender perception.
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Facial appearance is malleable. After exposure to a face (often referred to as an adaptation
period), the shape (Webster & MacLin, 1999), identity (Leopold, O’Toole, Vetter, & Blanz,
2001), gender (Afraz & Cavanagh, 2008), race (Amihai, Deonell, & Bentin, 2011), emotional
expression (Fox, Oru¢, & Barton, 2008), and attractiveness (Rhodes, Jeffery, Watson,
Clifford, & Nakayama, 2003) of subsequent faces can all appear altered.

Two explanations exist. According to one, face aftereffects (AEs) happen because
appearance is determined by the contrast between a given face and an encoded facial norm
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(Anderson & Wilson, 2005; Giese & Leopold, 2005; Leopold et al., 2001; Rhodes & Jeffery,
2006; Rhodes & Leopold, 2011; Susilo, McKone, & Edwards, 2010; Tsao & Freiwald, 2006;
Valentine, 1991; Webster & MacLeod, 2011). The norm is thought to reflect the average face
encountered in all circumstances throughout life. As the facial norm is an average of male
and female faces, it should appear androgynous. Hypothetically, each face we encounter acts
as an ‘“‘adaptor” which updates the norm, bringing it closer to the adaptors’ physical
characteristics. If the adaptor was a male face, the norm would be shifted toward
masculine physical characteristics, and all faces would look more feminine as a
consequence. Previously masculine looking faces would look more feminine as there would
be less difference between these and the new norm, whereas previously feminine looking faces
would look more feminine as there would now be a greater physical difference between these
and the updated norm (see Pond et al., 2013).

Computationally, it is thought that a dimensional norm (e.g., facial gender) corresponds
with the physical input that elicits equal responses from two oppositely tuned channels, and
that norm updating is achieved by differentially changing the responsiveness of these two
channels. This scenario is often referred to as a two-channel norm-based opponent coding
scheme (Anderson & Wilson, 2005; Giese & Leopold, 2005; Leopold et al., 2001; Rhodes &
Jeffery, 2006; Rhodes & Leopold, 2011; Susilo et al., 2010; Tsao & Freiwald, 2006; Webster &
MacLeod, 2011; see Figure 1(a)).

Another explanation is that facial appearance is determined by a multichannel coding
scheme, in a similar fashion to orientation perception (Barlow & Hill, 1963; Hubel &
Wiesel, 1962). In these schemes, perception is determined by the average stimulus value
signaled by active channels. Each channel “neuron” can be conceptualized as voting for a
given stimulus value, in proportion to that channel’s firing rate. Post adaptation, units
responsive to the adaptor become less responsive, and so the averaging process becomes
biased toward values offset from the adaptor. These biases are signaled by channels that
are now relatively more responsive. Importantly, such biases are bidirectional, toward values
offset from the adaptor in either direction. Hence, if face gender was subject to multichannel
coding, as has been suggested (Storrs & Arnold, 2012, 2015; Zhao, Series, Hancock, &
Bednar, 2011), faces that had appeared more and less masculine than the adaptor at
baseline will tend to appear even more and less masculine post adaptation (see
Figure 1(b)). This can be described as a contrastive AE, as this coding scheme tends to
exaggerate differences between the adaptor and distinct subsequent inputs.

While norm-based and multichannel coding predict different patterns of perceptual AE
(unidirectional and bidirectional), it can be difficult to diagnose data as resulting from either
scheme. The major reason for this is that both schemes make similar predictions concerning
category boundaries, and this is what is typically measured in facial adaptation studies (Afraz
& Cavanagh, 2008; Pond et al., 2013; Zhao et al., 2011). Both schemes, for instance, predict
that the face gender category boundary (the point at which people begin to categorize faces as
male more often than female) will shift toward faces that are physically more masculine post
male face adaptation. Norm-based coding predicts this because the putative “norm” will
have shifted toward the adapted value, creating a discrepancy between this and faces about
the old normative value, which had seemed androgynous, but will now seem more feminine
due to the changed reference frame. Multichannel coding predicts this because adaptation
will exaggerate differences between the adapted and other stimulus values, in this instance
biasing perception of what had seemed androgynous away from the masculine adaptor,
toward a feminine appearance (see Figure 1(b)).

One attempt to diagnose AEs as arising from norm-based or multichannel coding focused
on post adaptation sensitivity changes (Lawson, Clifford, & Calder, 2011). To attribute these
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Figure 1. Depiction of two coding schemes, and the AE patterns they predict. (a) In a two-channel norm-
based opponent code, two channels (top row—dotted lines unadapted, bold adapted) are maximally
responsive to opposite values on a dimension, here to female (— | on the physical input index scale) and male
(41). When active, these channels can be thought of as “voting” for their preferred value in proportion to
their response. Male face adaptation is simulated by reducing the male channel responsiveness relative to the
female channel. A discriminant function, of masculinity estimates as a function of physical input, can be
determined by expressing male “votes” in proportion to the total vote for each input value (middle row).
Post adaptation the discriminant function is shifted toward more masculine physical inputs (bold line), relative
to baseline (dotted line). This produces a unidirectional AE, with all affected faces looking more feminine
(bottom row). (b) In a multichannel coding scheme, channels are tuned to different physical input values (Row
I). Each channel can be thought of as voting for a specific masculinity estimate. Adaptation to a somewhat
male face can be simulated by reducing the responsiveness of a subset of channels, maximally for the channel
tuned to the adapted value (Row 2). Masculinity estimates can be determined by summing all votes, with each
“vote” expressed in proportion to all votes (Row 3). This generates contrastive AEs, with some inputs
encoded as less masculine post adaptation, and others as more masculine (Row 4).

to sensory coding, it is necessary to presume decisional criteria used in both phases of the
experiment are either fixed or equally variable (see Yarrow, Jahn, Durant, & Arnold, 2011).
In the first instance, any change in the pattern of behavioral response can unambiguously be
attributed to coding changes, as decisional factors are assumed to be fixed, but this is not
possible if one accepts that decisional criteria might be more stable in the adaptation
condition than in the baseline. The constant repetition of a particular exemplar (or
alternation of two exemplars), which characterizes face adaptation protocols, could
encourage participants to adopt the adaptor(s) as a reference, and judge other images
relative to it. An unadapted baseline condition, however, might be marked by less rigid
criteria, as there is no repeated reference against which to judge other test images. Hence,
responses in an adaptation condition could be more systematic, in addition to being more
biased, because of decisional factors, and this could be misconstrued as an improvement in
sensitivity due to coding changes. There is thus some ambiguity concerning whether changes
in decisional sensitivity can be attributed to sensory coding, or to the adoption of more or less
rigidly defined decisional criteria.

Other attempts to diagnose AEs as arising from a given coding scheme have focused on the
magnitude of category boundary shifts post adaptation. Both schemes predict larger shifts of
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the category boundary, at least initially, as the adaptor becomes a more extreme example of a
masculine or feminine face. Multichannel coding predicts that such AEs should eventually
diminish, as adaptors cease to influence neurons that are at least somewhat responsive to
both the adaptor and to nearly androgynous test faces. However, if support was found for
this (see Zhao et al., 2011), norm-based coding proponents could argue that the relevant
adaptors had been too extreme, and had ceased to look human, thus explaining the reduction
in AE magnitude (see McKone, Jeffery, Boeing, Clifford, & Rhodes, 2014; Pond et al., 2013
and Figure 1(a)). If AE magnitudes seem to scale with adaptor distance from the category
boundary (see Pond et al., 2013), multichannel coding proponents could argue that
insufficiently extreme adaptors had been sampled. Such evidence is therefore ambiguous
and inconclusive.

There are further problems inherent in trying to use the magnitude and spread of an AE,
as measured at the category boundary, as a coding scheme diagnostic. To predict how an
AEs’ magnitude should change according to a multichannel coding scheme, one needs to
know how far the facial dimension extends. Does the facial gender dimension, for instance,
encompass unnatural looking ogrish-masculine and elfin-feminine faces, or are such
unnatural (but still recognizable) faces encoded by different populations of neurons? Is the
dimension in question uniformly sampled by neurons responding to different subsets of faces
(evenly spaced along the dimension), or is the dimension nonuniformly sampled? What range
of different faces will a given face-tuned neuron respond to (i.e., what is the neurons’
bandwidth tuning)? Finally, where precisely do your experimental stimuli fall within the
facial dimension? This last question is impossible to know without answering the first
question posed here. Assumed answers to all these questions will determine how rapidly a
multichannel code predicts an AE should increase and decline as differences between a
particular adaptor and set of test images increase. The magnitude and spread of AEs
predicted by opponent coding are subject to similar considerations, such as the degree to
which adaptation changes channel responsiveness. Our point, which we wish to make
forcefully, is that it is very difficult to make firm predictions about how the magnitude of
a face AE should change for a set of inputs that are increasingly different to an adaptor, as
experimenters lack sufficient insight into a host of potentially influential factors.

A more definitive test is possible, but it necessitates an assessment of the appearance of
inputs falling both above and below an adaptor in terms of the relevant dimension.
Specifically, for face gender, we want to know if adaptation to any given face exaggerates
the masculinity of more masculine faces, while also exaggerating the femininity of more
feminine faces. Importantly, this clear diagnostic is predicted by a multichannel coding
scheme but not by a norm-based opponent code (see Figure 1). Note that this approach
(assessing the appearance of faces to either side of an adaptor in terms of the facial
dimension) is markedly different to the most common methodology used in this context,
which involves estimating the positioning of a natural category boundary (i.e., the point at
which faces switch from being categorized as predominantly male to female, or from being
Caucasian to Asian, or from being normally shaped to distorted; see Afraz & Cavanagh,
2008; Amihai et al., 2011; Webster & MacLin, 1999).

As face gender adaptation has retinally localized effects (see Afraz & Cavanagh, 2008), we
can assess the appearance of faces (independent of their position relative to a category
boundary) by comparing images presented in different locations. As both opponent and
multichannel coding can predict similar changes to the positioning of a natural category
boundary (Afraz & Cavanagh, 2008; Pond et al., 2013; Zhao et al., 2011), we have chosen
instead to focus on a more diagnostic test—whether face AEs are unidirectional (as predicted
by opponent coding) or bidirectional (as predicted by multichannel coding).
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Experiment |
Methods

Thirty volunteers participated (aged 17-28, M =20.3, SD =2.8, 20 female). All were naive as
to the experimental purpose and had normal or corrected-to-normal visual acuity. This
number of participants was predetermined based on numbers of participants included in
other, conceptually similar, studies.

Experimental stimuli were generated using MATLAB R2012b software (MathWorks,
Natick, MA) in conjunction with the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997)
and were presented on either a 19” Samsung SyncMaster 950SL, a 19” Samsung SyncMaster
950p+, or a 19” Dell Trinitron monitor, all set to a 1024 x 768 pixel resolution and a refresh
rate of 60 Hz. Stimuli were viewed from 57 cm with the head placed in a chin rest. Responses
were recorded via mouse button presses.

Twenty images (10 male and 10 female) of famous faces were chosen. These depicted front-
facing celebrities adopting neutral expressions. Images were chosen on the basis that they had
no facial hair, hair obscuring the face, or visible accessories (such as jewelry or spectacles).
Images were cropped around the face line and converted to grayscale.

Exemplar male and female faces were generated by averaging the 10 celebrity facial images
of either gender using the face mixer function in Abrosoft FantaMorph. An exemplar
androgynous face was generated using the same process to average all 20 images of both
genders (see Figure 2). Images were resized to subtend 2.2 degrees of visual angle (dva) in
diameter at the retina. The average luminance of all images was equated, first by using the
SHINE Toolbox for MATLAB (Willenbockel et al., 2010) and then via an additional
MATLAB calibration routine. The outline of faces was obscured via a gray oval-shaped
ring, resulting in an oval-shaped visible face without hair or ears (see Figure 2). These were
shown against a black background, so the average luminance and the average luminance-
contrast of all images relative to background were equated.

Procedure

Participants also completed a block of unadapted trials. On each trial, two test images were
presented (for 0.5 seconds). One was centered 2.2 dva to the left of a central red fixation
point, the other 2.2 dva to the right. Each subtended 2 dva in diameter. After each test

Figure 2. Exemplar male (left), androgynous (middle), and female (right) faces. All of these were included as
test images, and male and female exemplars were used as adapting images.
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presentation, participants indicated which face had looked more masculine by pressing either
the left or right mouse button. During a block of trials, each of the 23 test images (20 celebrity
images, 3 averaged exemplars) were used as standards and compared with the remaining
22 test images. A block of trials consisted of 506 individual trials, all presented in random
order with a 0.5-second pause between each trial. Participants were instructed to maintain
central fixation throughout testing.

Participants then completed an adaptation block of trials. Adaptation trials were similar
to baseline trials, with the exception that test presentations were preceded by a 3.75-second
adaptation presentation, and then by a I-second interstimulus-interval (ISI). In both
adaptation and baseline blocks of trials, responses were unhurried. Adapting images were
larger (subtending 2.6 dva in diameter at the retina) versions of the male and female
exemplars and were centered on the same locations on the display as test images. Half of
the participants adapted to the male exemplar on the right and the female on the left, other
participants adapted to a reversed contingency. A 1-second ISI followed each adaptation
presentation (see Figure 3). Midway through a block of trials, a screen was presented
instructing participants to rest and then to resume testing when ready.

Results

Our paradigm necessitates a slight modification to the qualitative AE pattern predicted by
two-channel norm-based opponent coding (see Figure 1). During adaptation blocks of trials,
each test image will be contrasted with all other test images in the other test location (see
Figure 3), and these images will have been subject to opposite adaptation. This will exaggerate

Adaptors
3.75 secs

Tests
0.5 secs

await response...

Figure 3. Graphic depicting a trial sequence during an adaptation block of trials. Here, a scenario is
depicted wherein the participant has adapted to the female exemplar on the left and the male on the right.
Following adaptation, there was an interstimulus-interval, followed by a test presentation. The participant
then indicated which test image had looked more masculine.
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AEs predicted by opponent coding, by an amount equal to the average impact of the opposite
adaptor on other tests (see Figure 4(a)). This does not, however, complicate our core
opponent coding prediction—that face gender AEs should be unidirectional.

The use of opposite adaptors could also modulate multichannel coding predictions.
If other tests are evenly distributed about the opposite adaptor, no modification to the
shape of the predicted AE function is necessary, as equal numbers of other tests should
seem more masculine and more feminine, producing no net bias. If, however, other tests
are unevenly distributed about the opposite adaptor, the AE function could be vertically
shifted, by an amount equal to the average impact of the opposite adaptor on other tests. In
Figure 4(b), we have depicted two extreme scenarios, wherein other tests are subject, on
average, to half the maximal AE induced by the opposite adaptor. Note that this would
shift the AE function inflexion point (where no AE is predicted) away from the adaptor’s
position along the encoded dimension. Note also that this would introduce an asymmetry,
with differently sized maximal positive and negative AEs. Once more, however, our core
multichannel coding prediction holds. This scheme will tend to encourage simultaneous
oppositely signed AEs for tests positioned above and below the adaptor in terms of the
encoded stimulus dimension. Moreover, while multichannel coding tends to predict this
bidirectionality, opponent coding cannot—so bidirectionality remains a strong diagnostic
even if precise AE predictions must be modulated.
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Figure 4. Modified predictions for Experiment |. In this experiment, the appearance of oppositely adapted
tests was contrasted. As each test was compared with all other (oppositely adapted) tests, opponent coding
(a) predicts AE magnitudes will be exaggerated, by the average impact of the opposite adaptor on all other
tests. If adaptation makes a test look more masculine, opposite adaptation will make other tests look more
feminine, increasing the apparent masculinity of the test image in comparison. Opposite adaptation could also
modulate population-coding predictions (b). If other tests are evenly distributed about the opposite adaptor,
no modification is necessary (half other tests would look less masculine, half more masculine, producing no
net bias). If, however, other tests are disproportionately positioned about the opposite adaptor, AE scores
will be modulated by the average impact of the opposite adaptor. Here, two opposite extreme scenarios are
depicted, wherein other test images are subject to half the maximum AE in either direction. Note that
relative to an unmodulated AE function, this would induce a lateral shift (such that the function inflexion
point, where no AE occurs, shifts away from the adaptor). Note also the predicted asymmetry in terms of
maximal AE for tests below and above the adaptor.
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To facilitate a test for a bidirectional AE pattern, as opposed to a unidirectional pattern,
we can contrast AEs for tests that are exaggerated relative to the adaptor—test faces that are
rated as more feminine than a female adaptor in that adaptation condition, and test faces
rated as more masculine than a male adaptor in that adaptation condition. Multichannel
coding predicts that perceptual differences, between these tests and their adaptors, will be
exaggerated, so faces rated as more feminine than a female adaptor at baseline should seem
even more feminine post female adaptation (producing negative AE scores), and faces rated
more masculine than a male adaptor should look even more masculine post male adaptation
(producing positive AE scores, see Figure 5(a)). Opponent coding predicts the opposite in each
case—that after adapting to a female face, all test faces (including those rated as more
feminine than the adaptor at baseline) should look more masculine, producing positive AE
scores. Conversely, after adapting to a male face, all test faces should seem more feminine
(including those rated as more masculine at baseline), producing negative AE scores (see
Figure 5(b)). The two coding schemes therefore predict oppositely signed contrast values
when we subtract exaggerated male adapted AE scores from exaggerated female adapted
AE scores.

Contrast values from comparing exaggerated test image AE scores can be compared with
contrast values from comparing muted test image AE scores. Each coding scheme predicts
same-signed AEs in these circumstances (see Figure 5(b))—faces rated more feminine than a
female adaptor at baseline should look more masculine post adaptation (producing positive
AE scores), and faces rated less masculine than a male adaptor should look more feminine
post adaptation (producing negative AE scores). The critical test for our hypothesis thus
reduces to whether comparisons of these two sets of AEs will produce contrast values of
the same (predicted by opponent coding) or opposite (predicted by multichannel coding) sign.

Each block of trials provided a masculinity rating (MR) for each test image. These reflect
the proportion of trials in which that particular test image had been rated as more masculine
relative to all other test images presented in the other test location. A MR of 0 would indicate
that the test had never been judged as more masculine than other test images, whereas a MR
of 1 would indicate that it had a/ways been judged as more masculine.

Individual AE scores were calculated for each test image in each adaptor condition (tests
in same position as the male adaptor, or in the same position as the female adaptor). This was
done by subtracting baseline MRs from adapted MRs (i.e., AE score=Adapted
MR — Baseline MR). Negative AE scores signify a reduction in MRs post adaptation
relative to baseline, positive AEs an increase (see Figure 6).

As it would be harder to detect a tendency for our most masculine looking test images to
look even more masculine relative to other tests, and vice versa for very feminine faces; AE
scores were transformed by expressing raw AE scores as a proportion of the possible change
in the observed AE direction (positive or negative from baseline) given the baseline MR for
that image for that participant. For example, an image with a baseline MR of 0.4 and an
adapted MR of 0.2 would have a transformed AE score of — 0.5 (as it had undergone half the
possible change given the AE direction). The same image with an adapted MR of 0.6 would
have a transformed AE score of + 0.33.

Our core predictions are that face gender AEs should either be unidirectional (according to
an opponent coding account) or bidirectional (according to a multichannel coding account).
To assess this, we can contrast differences between AE scores for tests that are exaggerated
relative to their adaptor (so tests that look more feminine than the female adaptor, and tests
that look more masculine than the male adaptor) and compare these to contrast values from
comparing AE scores for tests that are muted relative to their adaptor (so tests that look less
feminine than the female adaptor, and tests that look less masculine than the male adaptor).
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Figure 5. Graphic depicting predictions concerning the sign of face gender AE score contrasts, from
multichannel coding (a) and opponent coding (b). Blue frames signify that the test image was rated as more
masculine than the relevant adaptor at baseline, pink that the test image was rated as less masculine. Relevant
adaptors are depicted as smaller images, with black frames, adjacent to test images. In each panel, test images
that are exaggerated in terms of the adapted gender are shown above, whereas those that are muted are
shown below. Multichannel coding predicts that AE directions will be contingent on whether an input is
positioned below (—1) or above (+1) the relevant adaptor in terms of the category dimension. So
multichannel coding (a) predicts a negative contrast value when comparing AE scores for images exaggerated
in terms of gender relative to adaptors at baseline—images rated more feminine than the female adaptor
(—1) and images rated more masculine than the male adaptor (+1, so —| minus +1 = —2). Opponent coding
instead predicts AE directions will be contingent on the adaptor, so opposite biases should ensue from
adapting to a female (4 1) or to a male (—1) adaptor. For the same comparison as above, opponent coding (b)
predicts a positive AE contrast value (i.e., +| minus — | = +2). Note that the two coding schemes predict the
same outcome for images muted in terms of gender relative to adaptors—images rated less feminine than the
female adaptor (+41), and images rated less masculine than the male adaptor (+1, so +I minus —| =+2).
Average AE magnitudes will impact on the scale of this prediction, but will not impact on the sign of these
model predictions.
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Figure 6. AE scores, averaged across participants, for test images as a function of baseline MRs, averaged
across participants. Data are plotted separately for male (above) and for the female (below) adaptation
conditions. Miniature test images are superimposed over relevant data points. Adapting images are highlighted
by bold black frames. When visible beyond the limits of test images, error bars show | SEM.

AE scores for exaggerated and muted test images are shown in Figure 6(a), for both the
female and male adaptor conditions.

All AEs were in the direction predicted by our multichannel coding account. Exaggerated
female adapted AEs had, on average, a negative sign (—0.35, SD=0.265), whereas
exaggerated male adapted AEs had, on average, a positive sign (0.09, SD=0.032).
Subtracting individual exaggerated male AE scores from individual exaggerated female AE
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scores resulted in a positive contrast value (0.125, SD =0.384; single sample #(29)=1.797,
p=.0415, single tailed), as predicted by multichannel coding, and contrary to the predictions
of opponent coding (see Figure 5). Muted female adapted AEs had, on average, a positive
sign (0.124, SD =0.16), whereas muted male adapted AEs had, on average, a negative sign
(—=0.259, SD =0.202). Subtracting individual muted male AE scores from individual muted
female AE scores resulted in a negative contrast value (—0.383, SD =0.346; single sample
1(29) =6.083, p < .0001, single tailed). Note that we have used single-tailed ¢ tests here, as we
are testing for a predicted AE sign.

Discussion

The pattern of results in Experiment 1 was precisely as predicted by our multichannel coding
account, and contrary to that predicted by opponent coding. However, a number of
reasonable concerns can be raised. First, in this experiment, we used images of famous
faces as stimuli, and this could have conceivably distorted our results. It is unclear how
this might have encouraged a pattern of results reminiscent of the predictions of either of
the two coding schemes in question, but we nonetheless we repeated the experiment using
nonfamous faces.

Another consideration is the conceptually unnecessary complication of having included an
opposite adaptor. While this did not impact on our core qualitative predictions, it could
reasonably be regarded as unnecessary. So in Experiment 2, participants adapted to a single,
male or female, exemplar positioned to the left or right of fixation, with comparison images
presented on the other side of fixation.

Experiment 2
Methods

All details concerning Experiment 2 were as for Experiment 1, with the following exceptions.
Thirty-five volunteers participated (aged 17-41, M =21.9, SD=15.5, 30 female). All were
naive as to the experimental purpose. Half adapted to a male image and half to a female
image—a between-groups design. Only one adaptation image was used in each case,
presented to the left or right of fixation, counterbalanced for both groups. Images of
famous faces from Experiment 1 were replaced by pictures of noncelebrities sourced from
Google images. Image calibrations were as for Experiment 1.

Results

Initial stages of data analysis were as for Experiment 1, up to and including the calculation of
AE scores. These are depicted, for each adaptation group (male or female), in Figure 7.
Given the between-groups design of Experiment 2, we cannot calculate individual contrast
values for tests that were exaggerated in terms of gender relative to the adaptor in each
adaptor condition. To assess our core prediction, we shall therefore conduct two single
sample ¢ tests, testing for a robust face AE for exaggerated tests in each group. Recall that
the two coding schemes in question predict oppositely signed AEs for these two
conditions—multichannel coding predicts negative AEs for exaggerated female tests and
positive AEs for exaggerated male tests, whereas opponent coding predicts the reverse
contingency (see Figure 5). Analyses of these data supported multichannel coding
predictions, with a negatively signed AE for exaggerated female tests (M =-—0.11,
SD =0.23; single sample #(17)=3.09, p=.0035, single tailed) and a positively signed AE
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Figure 7. (a) AE scores for test images that were exaggerated in terms of gender relative to their adaptor
at baseline (more masculine than the male adaptor, and more feminine than the female adaptor) and for test
images that were muted in terms of gender relative to their adaptor (less masculine than the male adaptor
and less feminine than the female adaptor). Data are shown for the female adaptor (magenta) and for the
male adaptor (cyan). (b) Contrast scores from comparing AEs for exaggerated female adapted and
exaggerated male adapted test images. In all cases, error bars represent £1 SEM.

for exaggerated male tests (M =0.16, SD =0.32; single sample #(16) =2.09, p =.0263, single
tailed—see Figures 8§ and 9).

Discussion

AE directions in Experiments 1 and 2 were as predicted by multichannel coding and were
inconsistent with opponent coding predictions. While this repeated pattern of results seems
compelling, these data could be criticized as imprecise. The AE functions (see Figures 6
and 8) did not seem precisely defined, with a pivot point neatly falling about the adapting
image. A substantial degree of measurement noise is to be expected in this context, and so we
regard any robust region of oppositely signed AEs for exaggerated, relative to muted, test
images in either adapting condition as strong disproof that opponent coding solely drives
these AEs. Regardless, one factor potentially contributing to measurement noise is our use of
relatively extreme adaptors in terms of the masculinity dimension. A cleaner pattern of results
might ensue if we instead have people adapt to a single adaptor, positioned centrally
within the stimulus dimension. This would avoid complications arising from having
opposite adaptors (as per Experiment 1) and avoid the necessity of a between-groups
design (Experiment 2). In Experiment 3, we therefore had a single group adapt to a single
androgynous exemplar image.

Experiment 3
Methods

All details concerning Experiment 3 were as for Experiment 2, with the following exceptions.
Thirty-eight volunteers participated (aged 17-34, M =19.1, SD =3.1, 28 female). All were
naive as to the experimental purpose. All participants adapted to a single image depicting an
androgynous exemplar face (see Figure 2). This was presented to the left or right of fixation,
counterbalanced across participants. All other test images were as for Experiment 2.
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Figure 8. AE scores, averaged across participants, for test images as a function of baseline MRs, also
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averaged across participants. Data are plotted separately for the male (above) and for the female (below)

adaptation groups. Data points for images rated as more masculine than the relevant adaptor at baseline are
colored blue, data points for images rated as more feminine than the relevant adaptor are magenta. Adaptor
data points are colored red. Error bars show £1 SEM.
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Figure 9. AE scores for test images that were exaggerated in terms of gender relative to their adaptor at

baseline (more masculine than the male adaptor and more feminine than the female adaptor). Error bars

represent =1 SEM.
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Results

AE scores, as a function of baseline MRs, are depicted in Figure 10. Perusal of this figure
reveals a clear bidirectional AE pattern, as predicted by multichannel coding, but inconsistent
with opponent coding predictions.

To assess our core prediction, we conducted two single sample ¢ tests, testing for
oppositely signed FAEs for tests regarded as more masculine and as more feminine at
baseline than the adaptor. Of the two coding schemes, this is predicted by multichannel
coding (see Figure 5), whereas opponent coding either predicts a single direction of AE or
if the androgynous image we have chosen as an adaptor equally excites the hypothesized two-
opponent channels—no AE at all. Analyses of these data support multichannel coding
predictions, with a negatively signed AE for images rated as more feminine than the
adaptor at baseline (M =-0.14, SD=0.07; single sample #37)=5.13, p <.0001, single
tailed) and a positively signed AE for images rated as masculine than the adaptor at
baseline (M =0.24, SD=0.06; single sample #37)=6.13, p<.0001, single tailed—sce
Figures 8 and 11).

General Discussion

Our data show that face gender adaptation can exaggerate masculinity differences. Images
rated as more feminine than adaptors at baseline tend to look even more feminine post
adaptation, and images rated more masculine at baseline tend to look even more
masculine post adaptation (see Figures 5 to 7). These data are consistent with contrastive
AEs, as predicted by multichannel coding, but are inconsistent with the unidirectional AEs
predicted by norm-based opponent coding (see Figure 1).

Our data agree with results recently reported in a conceptually similar study, contrasting
the appearance of tests presented in differently adapted locations. That study examined tilt,
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Figure 10. AE scores, averaged across participants, for test images as a function of baseline MRs, also
averaged across participants. Data points for images rated as more masculine than the androgynous adaptor
at baseline are colored blue, data points for images rated as more feminine than the androgynous adaptor are
magenta. The adaptor’s data point is colored red. Error bars show 1 SEM.
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Figure 11. AE scores for test images rated as more feminine and as more masculine, on average across
participants, than an androgynous exemplar image used as an adaptor. Error bars represent =1 SEM.

facial gender, and facial identity AEs. In all cases, AEs were mitigated when one of the two
test images was also a (scaled) adaptor. This mitigation tends to be predicted by multichannel
coding but is inconsistent with opponent coding predictions (see Storrs & Arnold, 2015).
Here, we tested a stronger prediction of multichannel coding—that AEs should be
bidirectional. This cannot be predicted by a two-channel opponent code, as these predict
unidirectional AEs. Our data are in accord with the former prediction and at odds with
the latter.

Test images in this study were intentionally smaller (~70%) than adaptors, so our data
cannot readily be ascribed to operations that depend on adaptors and tests being tightly
colocalized in retinal coordinates (Afraz & Cavanagh, 2008, 2009; Zhao & Chubb, 2001).
Nor can our data be attributed to some test images, depicting celebrities, being recognized.
First, this was unlikely due to the brief (0.5 seconds) peripheral test presentations. Second,
any such tendency should have stabilized MRs, whereas the key feature of our data is that
facial appearance was malleable, and finally—we obtained qualitatively matched results in
two subsequent experiments using nonfamous faces. In all experiments, masculinity and
femininity was exaggerated, depending on whether the test had been rated as more or less
masculine than the relevant, unfamiliar, adaptor at baseline.

It is worth noting that in Experiment 1, the exemplar male image was rated as more
effeminate than all but one of the celebrity male faces (a youthful Justin Bieber), which
had been averaged to generate it (also see Pond et al., 2013). This is perhaps unsurprising,
as averaging multiple facial images results in a smoothed symmetrical image, free of skin
blemishes, which may be at odds with most people’s expectations of a male face. This
observation is pertinent, as several other studies have used similar methods to generate
exemplar “male” images and have then generated an array of test images linearly
morphing between this and a similarly generated female exemplar (Afraz & Cavanagh,
2009; Rhodes & Jeffery, 2006; Rhodes et al., 2004). Our data suggest that such studies are
examining variance ranging from a somewhat androgynous to a very feminine-looking face
and are unlikely to encompass masculine-looking faces. This strains credibility concerning
norm-based coding interpretations of the data resulting from such investigations. Even when
a study examined extrapolations beyond the natural limits of gender facial appearance, due
to a generation process based on image averaging with initial end-points suggested by male
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and female “‘exemplars,” the testing range would have been offset, biased toward physical
images that appeared feminine (see Zhao et al., 2011).

Conceptual Context—“Face Space”

The nature of the computations underlying face AEs are of interest as they speak to the
nature of the computations underlying face perception. It has been suggested that face
perception relies on a mapping that encapsulates the variance between different human
faces (see Valentine, 1991). The arrangement of this mapping, however, remains
mysterious. According to one view, facial information is mapped about a norm, with faces
described in terms of how they vary from the norm (Rhodes, Brennan, & Carey, 1987;
Rhodes & Tremewan, 1994; Valentine, 1991). This is known as a norm-based facial code.
According to another view, mapping of facial information is more diffuse, with faces
described in terms of how similar, or dissimilar, they are to various previously encountered
faces (Byatt & Rhodes, 1998; Robert, 1999; Valentine, 1991; Wallis, Siebeck, Swann, Blanz,
& Biilthoff, 2008). This is known as exemplar-based facial coding.

Some have taken face AE data as evidence for norm-based facial coding (Leopold, Bondar, &
Giese, 2006; Rhodes & Jeffery, 2006; Susilo et al., 2010). The idea is that the norm is updated via
adaptation, thereby changing the appearance of all subsequent faces because these are encoded
in terms of how they vary from the updated norm. In essence, according to this view, mental
representations are updated to reflect the prevailing statistics of the environment (Rhodes et al.,
2003). It is important for such interpretations that AEs be unidirectional—a norm cannot
simultaneously be updated in opposite directions. An exemplar-based coding scheme,
however, is consistent with multichannel coding and can predict contrastive (bidirectional)
AEs. According to this view, adaptation might serve to enhance sensitivity to change, by
exaggerating physical differences between the adaptor and subsequent inputs (Calder, Jenkins,
Cassel, & Clifford, 2008; Clifford, Ma Wyatt, Arnold, Smith, & Wenderoth, 2001). Our data
argue in favor of the latter exemplar-based coding strategy for face gender.

We believe there were preexisting reasons to be sceptical about the norm-based coding
explanation of face AEs. Given that an individual’s face space is hypothetically constructed
from a lifetime of experiences, it would be surprising if extremely brief (e.g., 5 seconds,
Leopold et al., 2001) exposures to an adaptor could dramatically shift the implicit norm,
but this would seem necessary according to this explanation. Rapid neural adaptation
resulting in bidirectional contrastive AEs can, however, happen (see Kohn, 2007 for a
review) . Further, it is possible to induce different AEs simultaneously, contingent on the
position, orientation, and the gender of faces depicted in test images. For example, opposite
configural distortions can be induced in upright and inverted images, such that upright test
images seem to have more contracted features, and inverted images expanded features
(Rhodes et al., 2004). If contemplated purely within the confines of opponent coding, this
would seem to require that there are at least two somewhat distinct face spaces, one for
upright and another for inverted faces (Rhodes et al., 2004). In fact, simultaneous AEs have
been demonstrated for different races (Jaquet, Rhodes, & Hayward, 2007), spatial positions
(Afraz & Cavanagh, 2008), and genders (Little, DeBruine, Jones, & Waitt, 2008; Jaquet &
Rhodes, 2008), so contingent adaptation could be, and has been, taken to suggest not one
face space but multiple somewhat independent spaces for faces with different orientations,
genders, races, and retinal locations. While possible, these suggestions do not seem
parsimonious, and all these data could equally, or perhaps be better, explained in terms of
multichannel coding interactions that exaggerate differences between adaptors and distinct
visual images presented in similar circumstances.
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While we are sceptical about an opponent coding of facial attributes, we would not like to
create the impression that opponent coding, or multichannel coding, are conceptually
implausible. Both schemes successfully describe patterns of AE in different contexts. Color
adaptation, for instance, is well described by opponent coding (Hurvich & Jameson, 1957,
Webster & Leonard, 2008), whereas spatial frequency and orientation AEs are well described
by multichannel coding (Blakemore & Nachmias, 1971; for a review, see Suzuki, 2005). Our
point is that both schemes are conceptually plausible and could well be used to encode
information about faces. Our data, however, argue against an opponent encoding of facial
gender.

Caveats

We have championed using a combination of spatial adaptation and a comparative
methodology to ascertain whether AEs are unidirectional (consistent with a two-channel
opponent code) or bidirectional (consistent with a multichannel code). We consider this
necessary, as the two coding schemes make very similar predictions about category
boundary shifts (which is what is typically measured in face AE studies).

On the basis of our data, we can state with confidence that face gender AEs are not
solely driven by opponent coding. This scheme cannot promote a bidirectional AE, and
we have found strong evidence for one in this context. This leaves open the possibility
that there might be an additional influence of opponent coding. If, for instance, the effects
of opponent coding were universal, impacting all faces regardless of location, our spatial
comparison task could not have measured it—we could only measure spatially specific
AEs. Note, however, that while this possibility exists, the suggestion lacks parsimony, as
it is not immediately apparent that one needs to assume this additional process to explain
empirical observations. Also, evidence suggests any spatially nonspecific face AE is weak
in comparison to retinally mapped AEs (see Afraz & Cavanagh, 2008, 2009), and it
might not easily be differentiated from experience-based decisional biases (see Yarrow
et al., 2011).

Conclusion

Overall, we would argue that in this context, too much emphasis has been placed on the
results of binary categorization tasks (Leopold et al., 2006; Rhodes & Jeffery, 2006; Susilo
et al., 2010). These can identify the positioning of a natural category boundary—the point at
which people cease to primarily categorize an input as one thing and begin to categorize it as
another. Binary categorization tasks cannot, however, diagnose an AE as unidirectional or
bidirectional, and it is this that is most clearly diagnostic of a norm-based versus
multichannel coding strategy. The comparative methodology we have used permits the
appearance of stimuli offset in both directions from an adaptor to be assessed. Using this
approach, we obtained data showing that the gender face AE is bidirectional, as predicted by
multichannel coding but in contradiction to the predictions of norm-based opponent coding.
Similar studies should be conducted to assess if other facial dimensions are subject to similar
coding strategies.
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