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A B S T R A C T   

The brain-time account posits that the physical timing of sensory-evoked neural activity determines the perceived 
timing of corresponding sensory events. A canonical model formalises this account for tasks such as simultaneity 
and order judgements: Signals arrive at a decision centre in an order, and at a temporal offset, shaped by neural 
propagation times. This model assumes that the noise affecting people’s temporal judgements is primarily neural- 
latency noise, i.e. variation in propagation times across trials, but this assumption has received little scrutiny. 
Here, we recorded EEG alongside simultaneity judgements from 50 participants in response to combinations of 
visual, auditory and tactile stimuli. Bootstrapping of ERP components was used to estimate neural-latency noise, 
and simultaneity judgements were modelled to estimate the precision of timing judgements. We obtained the 
predicted correlation between neural and behavioural measures of latency noise, supporting a fundamental 
feature of the canonical model of perceived timing.   

1. Introduction 

The temporal sequencing of events provides narrative structure for 
our experiences, and likely supports important cognitive operations 
such as inferring causal relationships (Michotte, 1954) and perceptually 
binding or segregating sensory representations (Fujisaki & Nishida, 
2010; Holmes & Spence, 2005). However, we don’t yet know how the 
brain determines synchrony and order. Indeed, even basic premises, 
such as the idea that the timing of the neural activity that represents an 
event is causal for the experience of subjective timing – which we refer 
to as the brain-time account – remain controversial (Dennett & Kins
bourne, 1992; Moutoussis & Zeki, 1997; Nishida & Johnston, 2002; 
Paillard, 1949; Whitney & Murakami, 1998; Yarrow & Arnold, 2016). 

The brain-time account has inspired several formal models of tem
poral sequencing. The canonical model (Sternberg & Knoll, 1973) rep
resents a special case of signal detection theory (Green & Swets, 1966). 
Behaviourally, tasks assessing perceived event timing, such as temporal 
order and synchrony judgements, reveal variation in judgements even 
across trials presenting the exact same physical stimuli, yielding gently 
sloped psychometric functions as responses gradually transition from 

predominance of one judgement category to another (e.g. asynchronous 
to synchronous). This implies that some kind of internal noise limits 
performance. A key assumption of the canonical model is that this in
ternal noise reflects latency noise, i.e. trial-to-trial differences in the la
tencies with which the signals representing events propagate through 
the nervous system toward a central decision centre. Modern variants of 
the canonical model retain the notion that latency noise is a key deter
minant of the psychometric function (García-Pérez & Alcalá-Quintana, 
2012a), even when they allow for other contributory sources, such as 
instability in decision criteria from trial to trial (Ulrich, 1987; Yarrow, 
Jahn, Durant, & Arnold, 2011). 

Discussions of the brain-time account often focus on the average 
subjective ordering of events, which could reflect neural propagation 
latencies. For example, participants are biased to tap earlier when syn
chronising tap responses with an auditory metronome, and this bias is 
exacerbated for foot tapping compared to hand tapping (Fraisse, 1980). 
This is consistent with an attempt to synchronise reafferent tactile and 
exafferent auditory signals in the brain, given generally longer so
matosensory relative to auditory latencies, with the resulting bias 
exaggerated by lengthened neural pathways from the foot relative to the 
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hand. A similar focus on subjective order is evident in more direct assays 
of timing in the human brain. For example, studies have related the 
average timing of neural activity, in the form of event-related potential 
(ERP) components, to attention-dependent changes in average 
perceived temporal order, known as prior entry effects (McDonald, 
Teder-Salejarvi, Di Russo, & Hillyard, 2005; Vibell, Klinge, Zampini, 
Spence, & Nobre, 2007). 

A focus on average subjective order, with less scrutiny applied to the 
predicted consequences of latency variation, is understandable, as esti
mating a bias seems conceptually more straightforward than measuring 
and making predictions about noise (but see Yarrow et al., 2011). Yet the 
impact of latency noise on the precision of timing judgements is a key 
diagnostic for the canonical model of event timing, which has not been 
thoroughly tested. Furthermore, the primacy of latency noise is by no 
means a given. In addition to conceptual criticisms (Dennett & Kins
bourne, 1992; Nishida & Johnston, 2002), several models exist which 
could imply primacy for other forms of noise. These include population- 
code models, formulated to explain aftereffects of event timing (Roach, 
Heron, Whitaker, & McGraw, 2011; Yarrow, Minaei, & Arnold, 2015), 
where noise is thought to reflect variation in the spiking activity of units 
tuned to specific timing relationships, and models that imply a series of 
linear operations on temporally filtered inputs (Burr, Silva, Cicchini, 
Banks, & Morrone, 2009; Parise & Ernst, 2016), where noise has been 
modelled as an add on at a decision stage. 

Here, we test whether neural-latency variation across trials predicts 
(and thus may limit) the precision of timing judgements. We present 
auditory, visual, and tactile stimulations, in order to estimate latency 
variation from inter-trial changes in ERP components. We then apply a 
variant of the canonical model (GLINC – Gaussian Latency Independent 
Noisy Criteria; Yarrow et al., 2011) to estimate the precision of syn
chrony judgements concerning audio-visual (AV), audio-tactile (AT), 
and visuo-tactile (VT) stimulus pairs. Our analytic approach is sche
matised in Fig. 1. We find that the precision of subjective timing 
judgements can be predicted from formally near-equivalent measures of 
inter-trial latency variation – consistent with the hypothesis that 
temporally noisy brains promote temporal imprecision in perception. 

2. Materials & methods 

2.1. Participants 

The combination of an unknown effect size and a complex family
wise correction applied across a spatiotemporally correlated neural 
signal (via cluster tests; see below) made a priori power calculations 
challenging. We opted to target a sample size of 50. This provides >80% 
power to detect an (uncorrected) correlation of 0.35 (with p < 0.05 
under our one-tailed hypothesis). Data were successfully collected from 
57 predominantly female1 participants, but for six, SJ data were insuf
ficient to properly constrain behavioural model parameters in one or 
more modality pairings (see data analysis, below) and for one, poor EEG 
data quality led to rejection of >50% of trials. The final (convenience) 
sample therefore contained 50 participants (mean age 27.6, SD 9.4) who 
reported normal or corrected to normal vision and hearing, and were 
reimbursed, either with course credits (for undergraduate psychology 
students) or at a rate of £8 per hour. They provided informed consent 
following procedures approved by the City, University of London Psy
chology Department ethics committee. 

2.2. Apparatus & stimuli 

The experiment was controlled by a PC running Matlab (The 

MathWorks, Nattick, U.S.A.) under Windows OS, utilising the Cogent 
toolbox (Wellcome Department of Imaging Neuroscience) and commu
nicating with both the stimulus peripherals and a second PC hosting the 
EEG recording software via a pair of parallel ports. These ports were 
accessed via the inpoutx64.dll freeware driver (http://www.highrez.co. 
uk/) made accessible in Matlab via the IO64 mex file (http://apps.usd. 
edu/coglab/psyc770/IO64.html). EEG was recorded using a BrainAmp 
amplifier (BrainProducts; sampling rate: 1000 Hz; filter pass band 
0.1–500 Hz) with 64 active electrodes placed equidistantly on the scalp 
(EasyCap, M10 Montage) and referenced to the right mastoid. Stimuli 
were delivered as a 10 ms on-off pulse via either a yellow LED for visual 
stimuli (located centrally, just beneath instructions on an LCD flat- 
screen monitor) or solenoid stimulators (tactors; Dancer Design, St. 
Helen’s, U.K.) for auditory and tactile stimuli. The tactile tactor was 
pinched gently between left forefinger and thumb. The auditory tactor 
struck a metal surface (a badge) pinned to the participant near their left 
ear in order to produce a sharp click. Throughout the experiment, a 
white-noise machine (Wellcare model SC1752) masked the subtle 
sounds associated with tactile stimuli. 

2.3. Design & procedure 

Following EEG preparation, participants sat comfortably in a dark, 
electromagnetically shielded room to complete the experiment (which 
took around 90 min). Each trial of the experiment contained either one 
or two events. Events could be central LED flashes, taps to the left hand, 
or left-lateralised audible clicks. Initially, participants received 35 
practice trials, in which they used their right hand to judge stimuli “not 
simultaneous” or “simultaneous” using left/right keyboard arrow keys, 
respectively. Participants were instructed to also use the non- 
simultaneous response if they detected only a single stimulus. During 
practice they received feedback about the correctness of each response. 
Trials could contain a single visual (V), auditory (A) or tactile (T) 
stimulus (each with probability 10/90), a bimodal AV, AT or VT pair 
with stimulus onset asynchrony (SOA) of 0 ms (each with probability 8/ 
90), or an asynchronous bimodal AV, AT, or VT pair with SOAs of − 500, 
− 300, 300 or 500 ms (each of these 12 possible combinations presented 
with probability 3/90). The practice sequence was random with 
replacement. 

Participants next completed an experimental block of 900 trials 
(with breaks offered every 35 trials). They now received no feedback. 
Trial types remained the same as during practice except that a wider 
range of bimodal asynchronous trials was presented, consisting of AV, 
AT, or VT pairs with 12 possible SOAs (±500 ms, ±300 ms, ±200 ms, 
±150 ms, ±100 ms, ±50 ms) and each of these 36 possible combinations 
occurred with a probability of 1/90. The sequence was now random 
without replacement and hence yielded exactly 100 unimodal, 80 
bimodal synchronous, and 120 bimodal asynchronous trials per mo
dality or modality pairing. 

Each trial began with the on-screen instruction “Look down at LED”. 
After one second the LED flashed five times across a 500 ms period (with 
a 50% duty cycle) to ensure attention was directed correctly. A random 
(800–1200 ms) fore-period preceded the onset of the first stimulus (or 
both stimuli in synchronous trials). For non-synchronous bimodal trials, 
the SOA determined the further delay to the second stimulus. After 
another 500 ms, the on-screen instruction changed to display the 
response options. Once the response was registered, 500 ms of feedback 
(on practice trials only) and/or a 500 ms blank response-stimulus in
terval completed the trial. 

2.4. Data analysis 

2.4.1. Observer model 
A variant of the canonical model for relative timing judgements was 

applied to behavioural data from bimodal trials, separately for each 
participant, and in the AV, AT and VT pairs (200 trials per modality 

1 A loss of data regarding the gender of the final 17 participants means we 
cannot provide an exact proportion, but we estimate that our sample was 80% 
female. 
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pairing). This “GLINC” observer model is schematised in Fig. 2. 
Data were summarised as proportion judged simultaneous at each 

SOA. They were fitted with a four-parameter observer model which 
typically predicts a psychometric function representing the difference of 
two cumulative Gaussians: 

P(Simultaneous) ∼ Φ
(

SOA − CLow

σLow

)

− Φ
(

SOA − CHigh

σHigh

)

(1) 

In Eq. (1), Φ is the standard normal cumulative distribution function. 
Under this model, the c parameters are the mean positions of two de
cision criteria (low and high) used to demarcate successive judgements 

from simultaneous judgements (i.e. the observer judges two stimuli 
simultaneous when the internal signals they generate arrive at a decision 
centre with a subjective SOA, Δt, that is both above the low criterion and 
below the high criterion). The associated σ values quantify (inversely) 
the slope on each side of the psychometric function. These are composite 
noise variables, used because they are formally identifiable in a model 
fit, whereas the various psychological constructs that feed into them are 
not. Each σ, when squared, represents the sum of two sources of vari
ance. The first, the variance of Δt, is itself the sum of the (Gaussian) 
latency variance associated with each stimulus. This source contributes 
to the slope on both sides of the psychometric function (low and high). 

Fig. 1. Overview of the analysis workflow used to establish correlations between behavioural and neural estimates of latency variation. Top Panel: Participants 
completed unimodal and bimodal judgement trials. Left Panels: Bimodal-trial (here, AT) performance was estimated using the GLINC model (expanded in Fig. 2) with 
the steeper of the two slopes from the resulting psychometric function inversely related to a behavioural estimate of latency variation (σmin). Right Panels: EEG data 
associated with unimodal, i.e. single stimulus, trials (here, A trials and T trials) were used to compute event-related latency variation profiles (see Fig. 3 for further 
details). These profiles were then combined to create an AT’ profile, representing a neural estimate of latency variation. Bottom Panel: The behavioural and neural 
estimates of latency variation were then tested for correlation using cluster permutation tests (see Fig. 5). 
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The second, the trial-by-trial (Gaussian) variance in a decision criterion, 
is unique on each side of the function, thus allowing the slopes to vary. 
Note that Eq. (1) is an approximation, with simulation required in rare 
cases when the approximation breaks down. 

Custom Matlab functions were used to find maximum-likelihood fits 
(assuming binomially distributed data). The Nelder-Mead simplex al
gorithm was used to find the best fit, with simplex searches initiated 
from the factorial combination of several positions per parameter (i.e. a 
grid search seeding a set of simplex searches). Observer models incor
porated a fixed 1% keyboard error/lapse rate, to model occasional errors 
without increasing parametric complexity (and also simplify the calcu
lation of log likelihood). In order to determine if participants had pro
duced data of sufficient quality to incorporate into our main analysis, we 
assessed whether (for each bimodal condition) the four-parameter 
model provided a significantly better fit than a two-parameter cumu
lative Gaussian (deviance improvement, χ2

[2] < 0.01, where deviance is 
− 2 times the shortfall in log-likelihood relative to a saturated model). 
This represents the lab’s standard approach to participant exclusion 
(Yarrow, 2018) with this null model used in place of a simpler guessing 
model, as it can capture both guessing, and cases where the range of 
stimuli is only sufficient to capture the decision boundary on one, but 
not both, sides of zero. For participants passing this test, we recorded 
their four best-fitting model parameters in each stimulus pairing, but in 
particular noted the smaller of the two σ values (i.e. the one associated 
with the steeper slope). This choice was guided by the particulars of the 
model – because both σ values contain the noise we are interested in 

(latency noise), but each overestimates it, as a results of also containing 
an additional nuisance source (criterion noise), the lower σ parameter 
should be the one less contaminated by this decision-level source. 

2.4.2. EEG pre-processing 
EEG data were pre-processed using custom Matlab scripts incorpo

rating functions from EEGLAB (Delorme & Makeig, 2004). Data were 
initially band-pass filtered (0.1–45 Hz) before identifying bad channels 
(all channels were assessed via channel spectra, and electrode traces 
outlying from the norm or with extreme irregularities were removed). 
Next, data were re-referenced to an average reference, and data recor
ded during breaks were rejected by eye before running an independent 
component analysis (ICA) targeting blink components for removal. A 
second artefact rejection by eye was conducted to remove any remaining 
irregularities in the data, such as excessive muscular noise, electrode 
drifts and miscellaneous peaks. Finally, the missing (bad) channels were 
spherically interpolated from the new, clean dataset. Epochs (− 200 to 
+800 ms relative to stimulus onset) were extracted for each unimodal (i. 
e. single-event) condition, with summary ERPs created following base
line correction to the mean of the first 200 ms. The artefact rejection 
steps left a median average of 91, 94 and 92 (range 56–99, 66–100, 
58–99) unimodal trials for the auditory, visual, and tactile modalities 
respectively. 

Note that by design our EEG analysis focussed on unimodal trials, 
which were included in the experiment specifically for the purpose of 
estimating neural latency variation. Bimodal trials were not utilised for 

Fig. 2. Schematic of GLINC observer model. Each signal must traverse a neural pathway to a decision centre, which receives both signals, and thus has access to their 
subjective difference in arrival times (Δt). (a) Each stimulus onset asynchrony (SOA) value (e.g. -50 ms) is presented many times during an experiment. Each 
presentation yields a noisy internal response (Δt). The relationship between objective and subjective asynchronies has unit slope and an intercept reflecting the 
average difference in transmission times between signals. However, the relationship is stochastic: Slicing for any given objective SOA yields the Gaussian distribution 
of resulting Δt values across trials, reflecting the signals’ combined latency noise. (b) This probability density function (PDF) is shown for a − 50 ms SOA. Participants 
judge the trial synchronous when Δt falls between two decision criteria (solid greyed region). As the area under a PDF (to the left of any given point) is captured in 
the cumulative density function, the shaded region can be estimated as the difference of two cumulative Gaussians, one integrating all the way to the rightmost 
criterion, the other integrating only to the leftmost one. Variable shading around the criteria indicates additional criterion noise; each criterion is most likely to be 
placed where the shading is darkest, but varies across trials. (c) Resulting psychometric function, with the point calculated in part b highlighted. Other points on the 
function are obtained in the same way. Precision is reflected in the slopes of the psychometric function. Under this observer model, both slopes combine latency noise 
and criterion noise, but the criterion noise is permitted to differ for each. Hence the steeper slope (σmin) will align with the more stable of the two criteria, and thus 
better reflect (i.e. be more dominated by) latency noise (see main text for further details). 
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our derived EEG measure, because they contain/conflate the brain’s 
response to two signals in a way that makes these responses difficult to 
separate, and we wanted to obtain an independent ERP for each indi
vidual modality, in order to properly equate neural and behavioural 
noise under the GLINC model (as described in the next section). Hence, 
because unisensory ERPs provide the bedrock for subsequent estimates 
of latency variation, we confirmed their information content via trial-by- 
trial decoding based on a 300 ms post-stimulus segment, using a nearest 
neighbour classifier with jack-knifed cross validation. Trials were clas
sified as A, V or T based on similarities between measures of brain ac
tivity on a given trial, and average neural activation patterns elicited by 
each type of stimulus (individually for each participant) on training 
trials (all trials for that participant, bar the trial to be decoded on that 
iteration of the decoding process). On average, stimulus modality could 
be decoded correctly on 64.7% of trials (95% CI 61.9–67.3), i.e. around 
twice the chance expectation. 

2.4.3. Event-related latency variation 
In order to provide a time-varying measure of latency variation for 

the brain’s response to isolated unimodal stimuli, we first calculated, for 
each participant and electrode, standard sensory ERPs, as the mean of all 
acceptable trials in a given condition, but with additional 20 Hz bi- 
directional (3rd order Butterworth) low-pass filtering to minimise 
small oscillations and emphasize more substantial components. Within 
each ERP, local maxima and minima were identified out to 500 ms post 
stimulus, and their times recorded. Conceptually, the next step was to 
generate 1000 bootstrap resamples of the ERP (Efron & Tibshirani, 
1994). A bootstrap resample is generated by resampling with replace
ment from the original sample, to create a new data set of equal size. The 
“with replacement” aspect of this procedure means that each resample is 
likely to contain some trials more than once, with some trials being 
entirely absent. Hence each resampled ERP was derived from a slightly 
different mixture of trials compared to the original ERP, and thus 
differed from it. For each such bootstrap ERP, we attempted to find the 
most sensible matches between its maxima/minima and those of the 
original signal, in order to build up bootstrap latency distributions for 
each turning point (see Fig. 3). In practice, such a match is quite chal
lenging, because a given bootstrap resample (calculated out to 600 ms to 
capture any delayed components) can generate more or less turning 
points than the original ERP, including some that are a poor match. 
Hence our bespoke Matlab function implemented a preliminary boot
strap (in order to identify likely time points where bootstrapping would 
generate spurious turning points) prior to the final bootstrap, where 
matching was achieved. Matching was based largely on correspondence 
of sign (i.e. being a maximum/minimum) and timing, but with some 
additional checks to try and ensure unique and sensible matches (spe
cifically, a match was rejected where it better matched a spurious locus 
than an original ERP turning point, or where, despite being the closest 
match for a particular turning point, it was closer still to a different 
turning point). Where a convincing match could not be determined, 
none was recorded, such that the bootstrap latency distribution for any 
given turning point could contain fewer than 1000 values. 

The standard deviation of each resulting bootstrap distribution (i.e. 
the bootstrap standard error) was multiplied by the square root of the 
number of trials contributing to a condition in order to recover a value 
approximating the standard deviation of the latency of each ERP 
component across trials. In a final step, these scores (one for each 
component, and representing neural-latency variation at the time of that 
component) were linearly interpolated, so as to give a time-varying 
measure that respected the sampling rate of the original EEG signal. 
These event-related variation profiles were derived by interpolating 
between a median average of 11 turning points (minimum/maximum of 
4 and 25 respectively across all electrodes/modalities/participants). We 
confirmed through simulation (using a tri-peaked difference of Gaussian 
to mimic underlying signal, and adding varying levels of latency, 
amplitude, and general 1/f noise) that our method generates estimates 

of latency noise that increase monotonically (albeit non-linearly) with 
simulated latency noise. 

2.4.4. Cluster-based correlations 
Visual, auditory, and tactile event-related latency variation profiles 

were combined in order to correlate them with behavioural measures 
that should (under the canonical model) also reflect latency variation. 
Because behavioural measures represent the standard deviation of Δt, 
which is formed from a combination of latency variation within each 
contributing modality, we created AV, AT and VT event-related latency 
variation profiles by squaring, summing, and square-rooting the two 
relevant profiles in each case (at each electrode). Correlating the 
resulting brain-based bimodal variation profiles (comprising 300 time 
points x 60 electrodes for each participant) with the relevant behav
ioural measure (e.g. σmin from the relevant psychometric function; one 
per participant) presents a substantial multiple comparison problem, 
which we addressed via cluster-based permutation testing (Blair & 
Karniski, 1993; Groppe, Urbach, & Kutas, 2011) using functions from 
the Fieldtrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011) 
(http://fieldtriptoolbox.org) to control familywise error (for each mo
dality pairing) at a one-tailed alpha of 0.05, reflecting our a priori 
directional hypothesis. Tests were based on 9999 permutations, with a 
minimum of two neighbours forming a cluster and a cluster threshold set 
to two-tailed p < 0.05. 

3. Results 

3.1. People differ in their ability to perform synchrony judgements 

Fits of the GLINC model (schematised in Fig. 2) to AV synchrony 
judgements are shown for two representative participants in Fig. 4a. As 
expected, judgements of synchrony were more likely when events were 
physically synchronous, or separated by only a brief interval. However, 
slopes on either side of the psychometric function suggest the presence 
of judgement noise, with different decisions reached on repeated trials 
with the same physical stimulation. GLINC ascribes this noise to a 
combination of neural-latency variation across trials, and to criterion (i. 
e. decision-level) noise. For example, the less-precise observer illus
trated in Fig. 4a (on the right of the panel) has a steeper slope (and thus a 
lower σ parameter) for the low than for the high criterion. The inter
pretation of this based on GLINC would be that this observer is better 
able to maintain a consistent internal demarcation between auditor
y‑leading and synchronous AV stimuli, compared to the demarcation of 
synchronous from visual‑leading stimuli. This pattern has been observed 
before (e.g. Yarrow et al., 2011) and indeed was found for the majority 
of participants in the current sample (33/50, binomial p = 0.033).2 

Under the GLINC model, the steeper of the two slopes (σmin) will 
better isolate neural-latency variation, so this is used here to estimate 
this quantity (see Fig. 2, especially legend to part c, and Section 2.4.1). 
These behavioural estimates of latency noise are illustrated for the full 
sample of participants, and all three simultaneity-judgement (SJ) tasks, 
in Fig. 4b. We also conducted split-half correlations on behavioural es
timates of latency noise, with data split into odd and even-numbered 
subsets of trials for each stimulus onset asynchrony (SOA) category 
before fitting. These tests indicated reliable individual differences in 
behavioural noise for all three SJ tasks (r values of 0.534, 0.335 and 
0.785; p values of <0.001, =0.0173, and < 0.001; for AV, VT and AT SJ 
tasks respectively). This establishes that it is reasonable for us to 
investigate what neural processes might explain our reliable individual 
differences in the precision of behavioural timing judgements. 

2 A similar tendency was evident in AT data, with 37/50 participants having 
less noise at the low criterion associated with the categorisation of auditor
y‑leading AT stimuli. No such tendency emerged for VT data (23/50 partici
pants with less noise at the criterion associated with visual‑leading VT stimuli). 
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3.2. Behavioural differences are associated with changes in neural- 
latency variation 

The canonical model predicts correlations between behavioural and 
neural estimates of latency variation. For our neural estimates, we used 
bootstrapping of ERPs recorded in response to isolated stimuli from each 
modality to estimate latency noise at each time point (out to 300 ms post 
stimulus) and each electrode (see Fig. 3). Having estimated visual, 
auditory, and tactile event-related latency variation profiles at each time 
point and electrode, we combined estimates from each pair of modalities 
(see Fig. 1 and Sections 2.4.3 and 2.4.4) to form three bimodal neural- 
variation profiles. Like our behavioural measures, these composite 

neural-variation profiles provided evidence for reliable individual dif
ferences across participants (with mean split-half r values of 0.616, 
0.611 and 0.627 for AV, VT and AT SJ tasks respectively, and r signifi
cant following permutation rmax correction (Blair & Karniski, 1993) at 
82% of electrodes and time points). Given robust individual differences 
in both behavioural and neural estimates of inter-trial latency variation, 
we proceeded to perform correlations between them as a direct test of 
our hypothesis. Each composite neural-variation profile was correlated 
with the corresponding behavioural measure that should (under the 
canonical model) reflect the exact same latency variation (e.g. audio and 
tactile profiles were combined for correlation with the behavioural 
measure AT σmin, see Fig. 1). To achieve a non-parametric whole-brain 

Fig. 3. Process for determining the event-related latency variation profile of a given electrode. The central panel shows one illustrative participant’s tactile ERP 
recorded by a contralateral centro-parietal sensor (bold black trace; EasyCap M10 electrode 12, selected because it contributes to a cluster emerging from our main 
analysis, presented in Fig. 5). This ERP is presented alongside 1000 bootstrapped ERPs, derived from the same set of trials (coloured traces). Black vertical markers 
show the locations of turning points in the original ERP – the more prominent of which are typical for a posterior somatosensory potential evoked by a mechanical 
pulse – a P50, N70, P100, and N140, followed by a slow positive wave (Hämäläinen, Kekoni, Sams, Reinikainen, & Näätänen, 1990). For each bootstrap, turning 
points were determined, and an algorithm attempted to match these up with those present in the original signal, giving rise to bootstrapped latency histograms for 
each component (shown above/below the ERP). The width of these distributions was used to estimate latency variation at the time of each component. These values 
were linearly interpolated, to generate a complete event-related variation profile (bottom panel). The dashed vertical line at 300 ms indicates the upper time limit for 
signals exported to subsequent correlation analyses. 

Fig. 4. Behavioural data. Error bars show 95% confidence intervals. (a) Example audio-visual SJ data for two participants (one relatively precise, one relatively 
imprecise). (b) Mean latency noise (σmin) in each sensory combination from the complete sample of participants. Surrounding shape widths denote kernel probability 
density estimates. AV = audio-visual, VT = visuo-tactile, AT = audio-tactile. 
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Fig. 5. Summary of results from cluster-permutation tests of correlations between behavioural and neural estimates of latency variation, for (a) audio-visual, (b) 
visuo-tactile and (c) audio-tactile synchrony judgement tasks. Within each panel, the lower row contains topoplots of average correlations, including all 25 ms epochs 
where a cluster remains significant throughout. Electrodes contributing continuously to the significant cluster are highlighted by red asterisks. One such electrode is 
further highlighted (black ring) for detailed illustration in the top row. Here, to the left, the correlation is plotted across time at this electrode. Correlations exceeding 
cluster thresholds are highlighted (red background region). One time point (yellow vertical line) is picked out for illustration in a scatterplot, shown on the right. 
Here, the line of equality is shown in dashed black, and the line of best fit in yellow (with 95% CIs in solid black). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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control of familywise error, we used cluster permutation tests. Results 
are illustrated in Fig. 5. 

Fig. 5a shows correlations between audio-visual SJ precision and 
neural-latency noise, estimated from isolated audio and visual ERPs. The 
cluster permutation test revealed a single significant cluster (p =
0.0245). Topoplots illustrate the strength of correlation across the scalp 
at all epochs spanned by this cluster. This cluster seems to emerge at 
central electrodes (consistent with electrodes where strong auditory 
ERPs are observed) around 50 ms after stimulus onset, then spreads to 
occipital electrodes (suggestive of visual system involvement), and 
persists until around 200 ms post stimulation.3 

Fig. 5b shows correlations in the visuo-tactile case. The permutation 
test again revealed a single significant cluster (p = 0.0328), this time 
emerging at right-central electrodes from around 150 ms post stimula
tion, spreading to occipital electrodes, before disappearing around 225 
ms post stimulation. 

In Fig. 5c, correlations involving audio-tactile timing precision are 
plotted, once again highlighting a single significant cluster (p = 0.0242). 
In line with the contributing left-lateralised unisensory signals, this is 
largely right lateralised, and spreads from central to parietal electrodes. 
The cluster lasts until around 100 ms, and emerges very early at 0 ms, 
probably as an artefact of our interpolation process used to estimate 
latency variation, which assigns the noise estimate from the first ERP 
turning point to all earlier time points (Fig. 3). 

Based on a model-derived hypothesis, we have so far correlated 
neural-latency variability estimated from contributing unisensory 
stimulations with behavioural estimates of timing precision from 
bimodal stimulations (e.g. A and V variation profiles were combined and 
then correlated with estimates of the precision of AV synchrony judge
ments).4 In principle, one might expect no such correlation between 
behavioural estimates and non-contributing unisensory signals (e.g. 
between AV behaviour and tactile ERPs). However, it is also plausible 
that some peoples’ brains have a generally high temporal fidelity, and 
others a generally poor temporal fidelity, sharing this property across all 
sensory modalities, in which case correlations would still emerge. 
Testing for these relationships, we found no significant clusters for two 
of three tests (VT-A: smallest p = 0.0949; AT-V: no positive clusters to 
assess), but found a significant cluster for the final such test (AV-T; p =
0.0074) with an early (0–125 ms) occipito-parietal locus. 

3.3. Average neural latency variability is higher for visual compared to 
tactile and auditory stimuli 

Temporal acuity may vary between the senses. Our behavioural data 
are suggestive of greater variability for synchrony judgements involving 
visual stimuli (see Fig. 4b – variability trend suggests AV > VT > AT). 
Repeated-measures permutation tests with a tmax familywise correction 
for the three possible pairwise contrasts indicated that of these, just the 
outer contrast (AV > AT) was significant (p = 0.013). We sought a 
similar pattern in our neural data, calculating a crude measure of neural 
variability in each modality by averaging latency variability profiles 
across the full 300 ms × 60 electrodes included in our main correlation 
analysis. This measure showed a V > T > A pattern (with variability of 
60, 55 and 54 ms respectively) that is somewhat consistent with our 
behavioural result. Tmax corrected permutation tests indicated signifi
cantly greater neural variability in response to visual stimuli, compared 
to both tactile and auditory stimuli (p < 0.001). 

4. Discussion 

The canonical model of multisensory timing perception formalises 
the brain-time account, i.e. the idea that the timing of particular oper
ations in the human brain determines the perceived timing of sensory 
events.5 Because the canonical model is a formal (if simple) process 
model, it makes clear predictions about the sources of noise that limit 
the precision of timing judgements. Specifically, the fidelity of timing 
judgements should be determined, to a substantial degree, by inter-trial 
differences in the speed at which contributing signals propagate through 
the central nervous system (measured as latency variation). Here, we 
tested this idea using synchrony judgements, completed alongside EEG 
recordings. Because it would be very difficult to estimate the latency 
noise affecting individual trials (either behaviourally from SJs, or in the 
brain from the corresponding single-trial bimodal ERPs, somehow 
decomposed into their unimodal constituents) we have not attempted 
any within-participant, trial-by-trial correlations of neural and behav
ioural noise. Rather, we used responses across multiple trials to provide 
a model-based estimate of behavioural noise for each participant, and 
have correlated these with bootstrap-based estimates of neural noise 
derived from EEG. For all three modality pairs (AV, VT, and AT), we 
observed the predicted positive relationship between individual- 
difference measures, supporting a key assumption of the canonical 
model. 

Inter-trial latency variation is likely to have a variety of physiological 
causes. Even operations as seemingly deterministic as propagations of 
action potentials show latency variance, at least for thin, unmyelinated 
axons (Faisal & Laughlin, 2007). Such latency noise is likely exaggerated 
greatly by stochasticity in the thresholding that occurs at synapses (e.g. 
Paraskevopouloua, Coon, Brunner, Miller, & Schalk, 2021). The ca
nonical model embraces such noise. However, several promising models 

3 We verified that the portions of contributing latency variation profiles 
which were coincident with this cluster contained many values estimated 
directly from ERP turning points (as opposed to being based entirely on inter
polated values falling between ERP turning points). For the AV cluster, which 
spanned 17 channels, each for a duration ranging from 7 to 116 ms, across 
participants a median average 18 (minimum 10) turning points intersected 
coincident portions of visual variation profiles, while a median average 17 
(minimum 12) turning points intersected coincident portions of auditory vari
ation profiles. We went on to make similar calculations for the VT and AT 
clusters that are described next in the main text. For the VT cluster, which 
spanned 22 channels, each for a duration ranging from 1 to 80 ms, across 
participants a median average 17 (minimum 8) turning points intersected 
coincident portions of visual variation profiles, while a median average 14 
(minimum 7) turning points intersected coincident portions of tactile variation 
profiles. For the AT cluster, which spanned 28 channels, each for a duration 
ranging from 1 to 107 ms, across participants a median average 26 (minimum 
14) turning points intersected coincident portions of auditory variation profiles, 
while a median average 29 (minimum 20) turning points intersected coincident 
portions of tactile variation profiles.  

4 Our analysis followed, in a principled manner, from the model we have 
assumed as the basis for generating psychometric functions (i.e. the GLINC 
model). For this reason, we used the steeper slope of the psychometric function 
to estimate behavioural noise (see methods). However, in response to an 
anonymous reviewer request, we re-ran our three correlation analyses using the 
average of the two slopes to estimate behavioural noise instead. Headline re
sults were very similar, with a single significant cluster emerging for all three 
modality pairs (AV p = 0.0461; VT p = 0.0299; AT, p = 0.0332). 

5 The brain-time account is usually invoked in discussions of event ordering. 
Event ordering can be seen as a prequel to other forms of time perception such 
as interval timing, although no clear consensus exists regarding the degree of 
neurocognitive interrelation between different forms of time perception (we use 
timing perception here to focus our discussion specifically on issues of relative 
order). In general, the brain-time account should probably be considered 
agnostic regarding the necessity of forming higher-order representations about 
time, such as of intervals, but specific formal accounts derived from it are 
required to be more specific. For example, our GLINC model implies that arrival 
order gives rise to a representation of intervening time (to which criteria can be 
applied to form judgements). Many formal models of interval timing go a step 
further, by acknowledging neural latency variability as a constant source of 
noise for interval judgements, but one that is typically dwarfed by interval- 
dependent “scalar” noise (Wearden & Lejeune, 2008). Such scalar noise is 
generally omitted in accounts of relative timing, because they focus on such 
tiny intervals. 
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of relative timing do not explicitly incorporate sensory latency noise 
(Parise & Ernst, 2016; Roach et al., 2011). Our data suggest that such 
noise may be an important feature that should be incorporated in 
modelling of time perception. 

We estimated inter-trial latency variation based on a bootstrapping 
approach. Our overall approach is novel, although bootstrapping itself is 
well established, having become a textbook method for estimating 
standard errors. There are, of course, other ways to estimate neural la
tency noise from EEG data. Possibilities include attempting to clean the 
data sufficiently to enable estimations of ERP latencies on individual 
trials, which would also provide an estimate of latency variance across 
trials. However, the noise levels associated with EEG data makes this 
approach challenging. Another approach would be to use the variance of 
the EEG signal across trials at each time point (cf. Arazi, Yeshurun, & 
Dinstein, 2019). Finally, for a non-time-varying estimate, one might 
select a temporal window of interest and compute cross correlations 
between all possible pairs of trials within that time window. The time 
delay that maximises each such correlation could then be calculated, 
with a summary statistic of these measures taken as an estimate of 
implied delays. We do not claim that our particular approach is a gold 
standard, but we do think it has some important strengths relative to 
these other possibilities. For example, the variance of EEG signals across 
trials, while straightforward to compute, would reflect both variability 
in the timing of ERP components, and variability in their magnitude, 
with each source contributing to an unknown extent. By contrast, our 
bootstrapping measure specifically targets latency noise (while still 
tracking changes in variability across time). 

It is worth acknowledging that any method that derives an aggregate 
measure of (bimodal) neural noise by combining estimates based on 
unimodal trials is blind to possible early interactions between sensory 
channels. Such interactions might affect latency noise, or even act as an 
entirely separate cue for the detection of synchrony (Arnold, Hohaia, & 
Yarrow, 2020). Ignoring this putative issue is true to the assumptions of 
the canonical model, which Sternberg and Knoll (1973) explicitly 
labelled the “independent channels” model on this account, but the 
existence/importance of early interactions between bimodal signals is of 
course an empirical question that might be addressed in future work. For 
this investigation, we chose a particular variant of the canonical model 
(GLINC) to fit behavioural data and generate predictions – one we have 
outlined and used in previous publications (Yarrow, 2018; Yarrow et al., 
2011; Yarrow et al., 2015; Yarrow, Martin, Di Costa, Solomon, & Arnold, 
2016; Yarrow, Sverdrup-Stueland, Roseboom, & Arnold, 2013). Other 
variants exist, with some important differences (García-Pérez & Alcalá- 
Quintana, 2012a; García-Pérez & Alcalá-Quintana, 2012b; Sternberg & 
Knoll, 1973; Ulrich, 1987), but all assume latency noise is reflected in 
the slope of psychometric functions that describe subjective timing, and 
so all variants derive some support from our findings. We invite other 
authors to use our publicly available data (Yarrow, Kohl, Arnold, & 
Rowe, 2021) to further test the predictions of different models. 

We recognise that our focus on noise in sensory processes invites 
comparison with Bayesian models (e.g. Knill & Pouget, 2004), which 
have become popular when modelling various kinds of time perception 
(e.g. Jazayeri & Shadlen, 2010) including judgements of relative time 
(Ley, Haggard, & Yarrow, 2009; Miyazaki, Yamamoto, Uchida, & Kita
zawa, 2006; Roseboom, 2019). GLINC does not incorporate Bayesian 
information-processing stages, such as the integration of a current sen
sory estimate with a prior derived from past experience, but the model 
architecture could be elaborated to incorporate this. Bayesian model 
predictions are generally tested by estimating noise from behaviour, and 
such tests might usefully be supplemented by approaches like ours, 
which additionally estimate noise from brain recordings. 

Our spatiotemporal illustrations should be considered, at best, sug
gestive. Caveats limit any inference regarding the spatial origins of 
neural signals from EEG scalp topography, and cluster significance does 
not imply significance for all contributing spatiotemporal points. 
Furthermore, ours are not classic contrasts, but rather correlations 

across participants. While some ERP components likely represent pro
cessing at regions critical for synchrony judgements, any ERP compo
nent correlated with these components would also emerge. For example, 
left-lateralised components evoked by a central visual stimulus might 
have a temporal fidelity limited by similar physiologically-imposed 
noise compared to right-lateralised components. The same applies to 
components preceding and following a critical component in time. 
Moreover, our method sums variance estimated from two contributing 
unimodal sensory signals, using spatiotemporal correspondence at the 
scalp, and it is not clear that this summation should accurately index a 
temporal comparator of different sensory modalities. Given these con
siderations, we feel the spatiotemporal loci of our correlations are sur
prisingly well matched to expectations, being most clearly right 
lateralised when both stimuli originated from the left (i.e. for audio- 
tactile stimuli), and broadly in line with regions of cortex relevant for 
each sensory pairing, and with expectations regarding processing la
tencies for different sensory modalities (e.g. central electrodes consis
tent with audio activations emerged early, right-central electrodes 
consistent with tactile activations slightly later, and occipital activations 
consistent with visual activation emerged last). 

Although we observed the predicted correlations, they were modest, 
accounting at best for around 25% of the variance in behavioural per
formance. Several factors may be relevant. First, correlations are limited 
by the reliability of contributing measures. These reliabilities are un
known in the absence of a retest session, but split-half analyses of both 
behavioural and neural data generated r values of around 0.5, suggest
ing test-retest correlations would likely fall well short of a perfect cor
relation. Hence, we have imperfect but moderately reliable measures of 
behaviour and neural activity, reflecting practical trade-offs when 
determining the length of experimental sessions. 

Second, only austere versions of the canonical model (e.g. Gibbon & 
Rutschmann, 1969) assume trial-by-trial latency variation is the only 
source of noise affecting timing judgements. Any additional sources of 
noise would suppress the correlations we have sought here. The GLINC 
model we have used, for instance, assumes criterion noise, i.e. an 
inability to make the same decisions about inputs, even if sensory coding 
and experiences are held constant across trials (Ulrich, 1987). Other 
variants assume participants cannot resolve relative timing when two 
signals arrive within some limited temporal window (Sternberg & Knoll, 
1973). This refractory “moment” might be triggered by the arrival of the 
first stimulus (e.g. García-Pérez & Alcalá-Quintana, 2012a; Venables, 
1960), but in this case it would not influence the slope of the SJ function, 
and thus should not act as an additional source of noise under our 
analysis. Indeed, this consideration informed our choice of task – we 
opted not to use temporal order judgements (TOJs), because TOJs seem 
more profoundly affected by additional sources of noise relative to SJs 
(Yarrow et al., 2016) perhaps including a flattening of the slope of the 
psychometric function resulting from something formally akin to a 
triggered moment (García-Pérez & Alcalá-Quintana, 2012a). We have 
previously concluded (via a very different kind of analysis) that varia
tion in evoked responses does not have an easily detectable role in AV 
TOJ performance (Arnold et al., 2020). 

Another variant of the canonical model proposes a moving (i.e. non 
stimulus-locked) perceptual moment (Stroud, 1956). This has been 
linked to the alpha rhythm, for example when explaining individual 
differences in the double-flash illusion (Cecere, Rees, & Romei, 2015) 
and changes in visual-visual TOJ sensitivity across an entrained alpha 
cycle (Chota, Marque, & VanRullen, 2021). Perhaps of greatest rele
vance here, individual alpha frequencies have also been linked with the 
width of synchrony functions for visuo-tactile SJs (Migliorati et al., 
2019), albeit without recourse to a formal observer model. A moving 
moment would increase noise in SJs much like criterion noise/variance 
under the GLINC model, because the time period within which the 
ordering of stimuli could not be resolved would vary from trial to trial, 
depending on where in the ongoing cycle the first stimulus happened to 
arrive. Hence, the modest degree of correlation in our data may provide 

K. Yarrow et al.                                                                                                                                                                                                                                 



Cognition 222 (2022) 105012

10

some support for both criterion-noise and moving-moment variants of 
the canonical model. 

In supporting the canonical model of relative timing, our data also 
support the broader brain-time account which it formalises. We recog
nise that our approach to testing the brain-time account is somewhat 
indirect, compared to the more common tactic of introducing experi
mental manipulations designed to vary mean transmission times while 
measuring corresponding changes in average timing perception and/or 
neural latencies (e.g. Fraisse, 1980; McDonald et al., 2005; Vibell et al., 
2007). However, we believe our method makes a novel contribution to 
the wider debate. Of course, there are other findings that cast doubt on 
the brain-time account as a complete and sufficient theory. For example, 
the existence of contextual influences on perceived event timing (e.g. 
Bechlivanidis & Lagnado, 2016; Miyazaki et al., 2006; Yarrow, White
ley, Haggard, & Rothwell, 2006) suggests a softening of the brain-time 
account, to admit that some degree of (likely post-hoc) biasing or 
rationalisation can occur. However, as we have argued elsewhere 
(Yarrow & Arnold, 2016), brain time remains viable as the fundamental 
basis for perceived temporal order, even if it is unlikely to be a complete 
account under all circumstances. 

Other results may appear challenging to the brain-time account, but 
often bear closer examination. For example, the canonical model implies 
that neural latencies inform the point of subjective simultaneity (PSS), 
such that relative latency is one reasonable explanation on offer for non- 
zero or altered PSS values (e.g. Freeman et al., 2013; Grabot & van 
Wassenhove, 2017). However, most variants of this model also provide 
equally valid alternative explanations (e.g. differences in the positioning 
of decision criteria) such that PSS results that appear to refute the brain- 
time account (e.g. apparent dissociations between tasks; Love, Petrini, 
Cheng, & Pollick, 2013) may be less challenging when viewed through 
the lens of a formal model (Yarrow et al., 2016). Indeed, many such 
“dissociations” seem to result from comparing measures believed to be 
comparable on some intuitive basis (e.g. the width of an SJ function and 
the just noticeable difference derived from a TOJ function) but for which 
formal modelling reveals no such equivalence. 

Returning to the current results: We have already noted limitations 
stemming from our correlational approach, and urge due caution when 
interpreting our findings. For example, the correlations we observe may 
be driven by an unmeasured third variable with putative effects on both 
our neural and behavioural measures, such as levels of arousal, focussed 
attention and so forth. We tried to make our measure of neural latency 
variability as specific as possible, but of course it is likely that this 
measure is itself related to more general forms of neural variability. 
However, although unmeasured variables might underlie the correla
tions observed here, we sought these correlations only because they are 
implied by the causal steps of a formal process model. This makes a 
causal attribution at least plausible. 

As a final issue, we note that we have incorporated three tests of our 
one-tailed hypothesis into our design. Although each was subjected to 
appropriate statistical control of familywise alpha levels, one might 
argue that the experiment-wise alpha is higher. However, there is 
considerable overlap between measures informing the three cluster 
tests, so their independence is unclear. Furthermore, the average p value 
across the three tests still implies significance. Hence, while our infer
ence is less robust than if we had independently verified the hypothesis in 
three separate data sets, we consider the degree of protection against 
false positives to be reasonable. We note, however, that a pilot for this 
project, with only AV stimuli and a less fully developed analysis, failed 
to detect the correlations we report here (Keane, 2019). As such, our 
findings would certainly bear replication. 

To summarise: Our data suggest that better performers on cross- 
modal SJ tasks exhibit lower levels of neural-latency noise compared 
to worse performers, exactly as predicted by the canonical model of 
relative time perception. We therefore argue that viable models of 
relative timing should incorporate latency variability in neural trans
mission times as an explicit feature of human time perception. 
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and time perception: Procedures, measures, & applications (pp. 295–325). Leiden: Brill.  

Yarrow, K., & Arnold, D. H. (2016). The timing of experiences: How far can we get with 
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