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Spatial Grouping Resolves Ambiguity to Drive Temporal Recalibration
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Cross-modal temporal recalibration describes a shift in the point of subjective simultaneity (PSS)
between 2 events following repeated exposure to asynchronous cross-modal inputs—the adaptors.
Previous research suggested that audiovisual recalibration is insensitive to the spatial relationship
between the adaptors. Here we show that audiovisual recalibration can be driven by cross-modal spatial
grouping. Twelve participants adapted to alternating trains of lights and tones. Spatial position was
manipulated, with alternating sequences of a light then a tone, or a tone then a light, presented on either
side of fixation (e.g., left tone—left light—right tone—right light, etc.). As the events were evenly spaced
in time, in the absence of spatial-based grouping it would be unclear if tones were leading or lagging
lights. However, any grouping of spatially colocalized cross-modal events would result in an unambig-
uous sense of temporal order. We found that adapting to these stimuli caused the PSS between subsequent
lights and tones to shift toward the temporal relationship implied by spatial-based grouping. These data
therefore show that temporal recalibration is facilitated by spatial grouping.
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Imagine you have gone to the cinema, and are irritated to
discover that the soundtrack is temporally misaligned with the
images: It has a noticeable lead. However, you are surprised to find
that the asynchrony becomes more bearable as time passes. Fi-
nally, on leaving the cinema you thank the usher, and are shocked
to find that his facial movements seem strangely detached from his
reply: His voice seems to lag behind. You have adapted to the
cross-modal temporal misalignment in the cinema and are now out
of synch with the real world.

Could this actually happen? Persistent exposure to temporally
offset sights and sounds can indeed bring about a temporal realign-
ment of vision and audition (Di Luca, Machulla, & Ernst, 2009;
Fujisaki, Shimojo, Kashino, & Nishida, 2004; Hanson, Heron, &
Whitaker, 2008; Harrar & Harris, 2008; Heron, Roach, Whitaker,
& Hanson, 2010; Navarra, Hartcher-O’Brien, Piazza, & Spence,
2009; Vroomen & Keetels, 2010; Vroomen, Keetels, de Gelder, &
Bertelson, 2004). However, the effect tends to be small (�25 ms)
and as such may not be readily apparent in daily conversation. The
original reports used beeps and flashes (Fujisaki et al., 2004;
Vroomen et al., 2004), perhaps suggesting recalibration at a fire-

work display rather than at a bad movie. Subsequent studies have
found recalibration in situations closer to the scenario described by
using video and soundtrack stimuli (Navarra et al., 2005; Vatakis,
Navarra, Soto-Faraco, & Spence, 2007; 2008), but again, the effect
was modest (�15 ms). Nonetheless, recalibration effects have
strong implications for our understanding of temporal perception.
They suggest that our sense of multisensory timing is more flexible
than straightforward accounts based on hardwired differences in
neural processing times might imply (e.g., Paillard, 1949; Schroe-
der & Foxe, 2004).

Here, we focus on one rather perplexing feature of the phenom-
enon as described to date: The spatial congruence of the adapting
events does not seem to matter. Many other multisensory interac-
tions show a strong dependence on spatial coincidence—such that
it is common to speak of a “spatial rule” in multisensory binding
(Holmes & Spence, 2005; Stein & Stanford, 2008). In contrast to
this, Fujisaki et al. (2004) found that the magnitude of temporal
recalibration was almost identical when the sound was presented
over headphones compared to when it was presented from a hidden
speaker positioned directly below the visual stimulus. Similarly,
Keetels and Vroomen (2007) combined an LED flash directly in
front of their participants with a sound burst presented from either
the same location or from a position directly to the left or right.
Recalibration did not differ statistically between these two types of
adaptor.

To explain these negative findings, it may help to consider
the deliberately sparse adaptation conditions in a typical reca-
libration experiment. Each bisensory pair of adapting events is
repeated many times in a consistent relationship. Critically,
these pairs can easily be grouped on the basis of temporal
proximity because the interval between each presentation of a
bisensory pair greatly exceeds the offset between the paired
events. Hence, the experiment is set up to generate strong
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temporal proximity-based grouping. Thus, it may not be sur-
prising that additional cues pertinent to the binding of each
bisensory pair have little power to further affect grouping, and
thus the degree of temporal recalibration.

In this paper we introduce a simple manipulation that allows us
to show clearly that spatial coincidence does in fact influence
cross-modal temporal recalibration: We remove temporal cues to
grouping for our bisensory events, while providing spatial cues
that generate an implied direction of temporal asynchrony. Spatial
location is known to provide a powerful cue for the grouping of
perceptual elements. In audition, for example, auditory stimuli that
are usually interpreted as parts of a single stream can segregate
into multiple streams when presented from different spatial loca-
tions (Bregman, 1990).

The adaptor sequence that we used is depicted in Figure 1.
Observers were exposed to a train of alternating flashes and beeps
that were equally spaced in time, such that any flash could be
interpreted as leading the subsequent beep or lagging the preceding
one. However, the spatial position from which the flashes and
beeps arose could be used as a cue to disambiguate this situation,
implying a constant asynchrony between sequential pairs of events
presented to one side of fixation. To anticipate our results: We
found robust cross-modal temporal recalibration in a direction
consistent with events having been interpreted according to a
spatial rule.

Method

Design

The repeated-measures design comprised two adaptation condi-
tions: light lagging and light leading. The interval between lights
and tones (200 ms) was physically identical in the two conditions.
The labels therefore reflect the temporal relationship implied by

the spatial arrangement of the stimuli. For the light lagging con-
dition, the adaptation train contained multiple repetitions of the
sequence left tone—left light—right tone—right light; for the light
leading condition, it was left tone—right light—right tone—left
light. Hence spatial grouping implied a consistent lag or lead
where none really existed. The order in which participants com-
pleted the two conditions was counterbalanced.

After the presentation of an adapting sequence, participants
were shown pairs of test events separated by 11 possible stimulus
onset asynchronies (SOAs: �350, �250, �150, �100, �50, 0,
50, 100, 150, 250, 350; negative numbers denote lights before
tones). During a block of trials, participants were shown each of
these 11 timing relationships on 10 occasions, all in a pseudoran-
dom order. This yielded 110 trials per block. Each participant
completed two blocks of trials for each condition, therefore 220
trials per condition.

Participants

Twelve naı̈ve participants (8 men) with normal or corrected-to-
normal vision took part in exchange for either money or course
credits. All procedures were approved by the University of
Queensland School of Psychology ethics committee.

Apparatus and Stimuli

A PC running Matlab (MathWorks, Natick, MA) interfaced with
an RX8 Multi I/O Processor (Tucker-Davis Technologies, Ala-
chua, FL) produced stimuli at 100 kHz. The RX8 Multi I/O
Processor controlled two green LEDs mounted on two speakers as
well as a central yellow fixation LED. The fixation LED was
located 57 cm in front of the observer, while the speakers and
green LEDs were located 25 cm to the left and right of fixation.
The participant’s head was supported by a chin rest, with eyes
approximately 25 cm above the speakers. Peripheral LED flashes
lasted 10 ms plus a 5 ms linear onset/offset ramp. Auditory stimuli
were 10 ms 1000 Hz pure tones with a 5 ms linear onset/offset
ramp.

Procedure

A block of trials began with 60 s of adaptation, while partici-
pants fixated the central LED. Peripheral stimuli were presented at
a constant rate of 5 Hz alternating between beeps and flashes. A
pattern of four stimuli, two on the left and two on the right, was
presented repeatedly (see Design). Following adaptation, a trial
was signaled by the brief offset then onset of the central LED.
Audiovisual pairs were then presented (with the auditory compo-
nents beginning 500 ms after central LED onset) simultaneously
on both sides of fixation (i.e., two synchronous lights with an SOA
relative to two synchronous tones). Participants judged whether the
test lights and tones had been synchronous or asynchronous. Two
seconds later, a top up adaptation train was presented for 5 s (i.e.,
6.25 repetitions of the four-stimulus pattern) before the next trial
commenced. To ensure that adaptation was robust, a second full
(i.e., 60 s) adaptation train was presented in the middle of each
block (i.e., every 55 trials).

Data Analysis

The proportion of times that each participant judged audiovisual
pairs as synchronous was determined for each SOA in each con-
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Figure 1. Schematic showing the position of experimental apparatus (A)
and the adaptation procedure (B). Lights and tones were presented in
alternation, with grouping implied by the spatial coincidence of each event
with just one of the two temporally adjacent events. This example would
imply light-leading grouping.
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dition. Data were fitted with a difference of cumulative Gaussians
function, which is the model implied if observers categorize the
difference in arrival time between the auditory and visual stimuli
by saying “synchronous” if the difference falls between two cri-
teria (see Schneider & Bavelier, 2003, Appendix A.1 for a deri-
vation).1 A maximum-likelihood fit was obtained using the
Nelder–Mead simplex algorithm (Nelder & Mead, 1965; O’Neill,
1971) to estimate the point of subjective simultaneity (PSS). The
model also yielded two additional parameters, reflecting the typ-
ical placement of criteria for simultaneity, and noise (in transmis-
sion latencies and/or the consistency with which criteria were
maintained). Standard two-tailed parametric tests were used to
assess differences in these parameters across conditions.

Results

Figure 2A shows raw data alongside the maximum likelihood
estimation (MLE) fit for the combined data from all participants.
Figure 2B shows equivalent data for one participant, selected
because their individual PSSs closely matched the sample mean
values. Stimulus onset asynchronies, shown along the x-axis, de-
note the time of the light relative to the beep in test trials (i.e.,
negative SOAs imply the light came first). In general, the fitting
procedure captured the qualitative features of the data well. Model
fits were assessed formally using the deviance statistic. If the
model is a good one (and to the extent that asymptotic approxi-
mations hold) deviance should follow a chi-squared distribution

and exceed 19.68 only 5% of the time (Wichmann & Hill, 2001).
This value was exceeded in only two of 24 individual fits.

PSS estimates were calculated for each participant based on the
best fit to their data, with a negative value indicating that, on
average, the light had to be presented before the tone to be judged
as simultaneous. The group mean PSSs are shown in Figure 2C.
The PSS was slightly negative in the light lagging condition
(�19.5 ms) and showed a more pronounced negative bias in the
light leading condition (�56.0 ms), showing that the spatial cues
in the two adaptation sequences differentially influenced partici-
pants’ sense of audiovisual synchrony. Importantly, the PSS was
shifted in the direction of the implied adapting asynchrony (true in
11 out of 12 participants). This difference was confirmed with a
paired-sample t test, t(11) � 4.52, p � .001. Additional parameters
derived from the model fits, shown in Table 1, did not differ
reliably between conditions.2

Discussion

We presented participants with two types of adaptation trains
consisting of lights and tones. The trains had identical (and am-
biguous) temporal properties that would not be expected to gen-
erate strong and consistent grouping into bimodal pairs. However,
they differed in their spatial properties, such that the trains could
be grouped into bimodal pairs coming from one side and then the
other in alternation. Our design ensured that the consistent match-
ing of audiovisual elements could be achieved easily: We used
stimulus pairs repeating at 2.5 Hz, whereas synchrony judgments
only break down at around 4 Hz (Fujisaki & Nishida, 2005). Hence
this spatial grouping should have implied a consistent lag or lead
between matched bimodal pairs.

Test stimuli presented at a range of SOAs were used to deter-
mine points of subjective simultaneity after adaptation. The mean
PSS differed reliably between the two conditions, in line with their
having shifted in the direction of the adapting asynchrony implied
by the spatial arrangement of adaptors. Hence our spatial grouping
cue appeared to resolve the temporal ambiguity regarding the
pairing of bimodal events, and thus gave rise to a consistent
interpretation that evidently drove an audiovisual temporal recali-
bration. The success of our spatial grouping cue is consistent with
much previous research, which suggests that spatial coincidence is
important when grouping multisensory events (Holmes & Spence,
2005; Stein & Stanford, 2008).

We obtained a negative PSS in both of our adaptation condi-
tions, which may seem surprising. However, the unadapted PSS
for audiovisual stimuli is consistently found to occur when lights
precede sounds (see review in van Eijk, Kohlrausch, Juola, & van
de Par, 2008) so a value in the range of �20 to �55 ms, as implied
here, is reasonable. We did not take a baseline measure in our
experiment because there was no need to do so. Our basic claim is
that recalibration can, under the right circumstances, depend on
spatial cues to stimulus grouping. Evidencing this claim requires

1 Simultaneity judgments are often fitted using a Gaussian or truncated
Gaussian function, which provides a shape quite similar to the difference
of two cumulative Gaussians we employed, but has no detection-theoretic
rationale.

2 For a fuller discussion of these parameters and their interpretation, see
Yarrow, Jahn, Durant, and Arnold (2011).
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Figure 2. Results of the spatially implied asynchrony experiment. (A)
Combined data from all participants, alongside the fit provided by a
difference of cumulative Gaussian model. Data is shown separately for the
light leading (gray solid lines) and light lagging (black dashed lines)
conditions. (B) Equivalent data and fit for a single participant. (C) Mean
points of subjective simultaneity across all participants (derived from fits
like those shown in part B for each adaptation condition and each partic-
ipant). Error bars show standard error of the mean. Vis � visual; aud �
audio.
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only that we demonstrate differences in the PSS when spatial
grouping cues differ but other grouping cues remain constant.
These differences in the PSS imply a different magnitude of
recalibration in the two conditions because there are no other
reasonable mechanisms by which the PSSs might have come to
differ. Of course, recalibration relative to baseline may have oc-
curred either in both conditions or in just one of them, but this is
irrelevant to the logic of our demonstration.

We would like to emphasize that our adapting trains were
identical in all respects relevant to implied grouping except for the
spatial cues that we deliberately inserted. It could be argued that
our temporally ambiguous adaptation trains actually contained
temporal cues to grouping because we used an asynchrony (�200
ms) that was objectively ambiguous, but may not have been
subjectively ambiguous given the baseline bias outlined above.
However, such a tendency would have encouraged lights to group
with succeeding sounds regardless of experimental condition. Sim-
ilarly, participants could perhaps segregate an ambiguous train of
this type by grouping the first pair of stimuli they received together
and then repeating this grouping strategy for the remainder of the
adaptation period. However, both of our trains began with a tone
followed by a light, so the implied grouping would again be
identical with respect to this cue.

Why did we obtain a spatial modulation of audiovisual tem-
poral recalibration when previous attempts have failed to do so
(Fujisaki et al., 2004; Keetels & Vroomen, 2007)? We suspect
that those authors used adaptation trains with such strong tem-
poral cues to grouping that spatial cues could do little to affect
the perceived pairings. We suggest that when a single audio and
a single visual input are presented close together in time, they
are likely to group despite the spatial arrangement. Essentially,
what we have done here is to increase our experiment’s sensi-
tivity to detect spatial modulation by presenting a greater num-
ber of distinct audio and visual events. Recently it has been
shown that this simple manipulation can have profound effects
on measures of audiovisual simultaneity (Roseboom, Nishida,
& Arnold, 2009).

In summary, we demonstrated that spatial cues can be used to
group bimodal stimuli and bias audiovisual temporal recalibration.
Previous data suggested that the mechanism that implements tem-
poral recalibration was injudicious, in that it seemed to respond

equally to all possible combinations of sensory events, modulated
only by their degree of temporal separation. Our finding is impor-
tant because it shows that other contextual information can affect
audiovisual temporal recalibration. This, of course, fits with the
intuition that adaptive behavior should be smart, not stupid.
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