School of Psychology - Directory - People - Dr Philip Grove

Dr Philip Grove
  – Senior Lecturer

Picture of 'Dr Philip Grove'
Dr Philip Grove
I conduct psychophysical experiments on basic and applied aspects of human space perception including stereoscopic vision. I also investigate how inputs from different senses, such as vision and audition, are coordinated in the perception of events and self-motion.
+61 7 3365 6383
+61 7 3365 4466
Postal Address:

School of Psychology
The University of Queensland
St. Lucia
Brisbane QLD 4072

Picture of 'Dr Philip Grove'
Dr Philip Grove

BA (Hons), York University, Toronto, Canada

MA, York University, Toronto, Canada

PhD, York University, Toronto, Canada


1998-2000: Researcher at Advanced Telecommunications Research Laboratories, Kyoto Japan.

2002-2005: Vice Chancellor's Post Doctoral Research Fellow, School of Psychology, The University of New South Wales.

2005: Visiting Professor, Department of Human Informatics, Tohoku Gakuin University, Sendai Japan.

2006 - present: Faculty at UQ.

Professional Activities:

Teaching:  Psychology Research Methodology 1 (PSYC1040)

Neuroscience for Psychologists (PSYC2020)

Picture of 'Dr Philip Grove'
Dr Philip Grove
Research Activities:

Basic aspects of binocular vision and stereoscopic depth perception.

Evaluation of 3D interfaces in laparoscopic surgery and endoscopy.

Auditory, Visual, and Vestibular cross modal interactions.

Representative Publications:

1) Sakata, S., Grove, P.M., Watson, M.O. & Stevenson, A.R.L. (2017).The impact of crosstalk on three-dimensional laparoscopic performance and workload. Surgical Endoscopy. doi:10.1007/s00464-017-5449-5

2) Sakata, S., Grove, P.M., Hill, A., Watson, M.O. & Stevenson, A.R.L. (2017). The impact of three-dimensional (3D) perception on the precision of depth judgements, technical performance and perceived workload in laparoscopy. British Journal of Surgery.  DOI: 10.1002/bjs.10528 

3) Zeljko, M., and Grove, P.M. (2017). Low level motion characteristics do not account for perceptions of stream-bounce stimuli. Perception, 46, 1, 31-49.

4) Zeljko, M., and Grove, P.M. (2017). Sensitivity and bias in audiovisual perception. Perception, 46, 2, 178-204.

5) Sakata, S., Grove, P.M., Hill, A., Stevenson, A.R.L. & Watson, M.O. (2016). The viewpoint specific failure of modern three-dimensional displays in laparoscopic surgery. Langenbeck's Archives of Surgery 1-12 doi: 10.1007/s00423-016-1495-z.

6) Sakata, S., Grove, P.M. & Stevenson, A.R.L. (2016). The impact of three-dimensional vision on surgeons using the da Vinci robot: More than meets the eye. Journal of the American Medical Association: Surgery, 151 9: 793-794. doi:10.1001/jamasurg.2016.0412

7) Sakata, S., Grove, P.M., Stevenson, A.R.L. & Hewitt, D.G. (2016). The impact of three dimensional imaging on polyp detection during colonoscopy: a proof of concept study. British Medical Journal: Gut. doi:10.1136/ gutjnl-2016-311507 

8) Grove, P.M., Robertson, C., Harris, L.R. (2016). Disambiguating the stream/bounce illusion with inference. Multisensory Research, 29, 453-464. doi:10.1163/22134808-00002524

9) Sakata, S., Watson, M.O., Grove, P.M. & Stevenson, A.R.L. (2015). The conflicting evidence of three-dimensional displays in laparoscopy: A reveiw of systems old and new. Annals of Surgery, 263, 234-239. DOI: 10.1097/SLA.0000000000001504 

10) Harrold, A.L. & Grove, P.M. (2015). Binocular correspondence and the range of fusible horizontal disparities in the central visual field. Journal of Vision, 15(8):112, 1-17.

11) Finlayson, N.J & Grove, P.M. (2015). Visual search is influenced by 3D spatial layout. Attention, Perception and Psychophysics. DOI 10.3758/s13414-015-0924-3 

12) Kawachi, Y., Grove, P.M. & Sakurai, K. (2014) A single auditory tone alters the perception of mulitple visual events, Journal of Vision, 14(8):16, 1-13 DOI: 10.1167/14.8.16

13) Grove, P.M., Mapp, A.P. & Ono, H. (2014) The bifixation field as a function of viewing distance. Journal of Ophthalmology. 

14) Grove, P.M., Finlyason, N.J. & Ono, H. (2014) The effects of stimulus size on stereoscopic fusion limits and response criteria. Perception, 43, 155-177.

15) Grove, P.M. (2013)  “The psychophysics of binocular vision”, in 3DTV System with Depth-Image-Based Rendering: Architectures, Techniques and Challenges, edited by Ce Zhu, Yin Zhao, Lu Yu and Masayuki Tanimoto, Springer Science+Business Media (DOI: 10.1007/978-1-4419-9964-1; ISBN: 978-1-4419-9963-4).

16) Grove, P.M. & Harrold, A. (2013) The range of fusible horizontal disparities around the empirical horopters. IEEE Xplore DOI:10.1109/IC3D.2013.6732084 ** 2013 International 3D Society LUMIERE AWARD - Europe: Best Scientific Paper **

17) Finlayson, N.J., Remington, R.W., Retell, J.D. & Grove, P.M. (2013) "Segmentation by depth does not always facilitate visual search". Journal of Vision, 13(8):11, 1-14 doi: 10.1167/13.8.11

18) Grove, P.M. & Ono, H. (2012) "Horizontal/vertical differences in range and upper/lower visual field differences in the midpoints of sensory fusion limits of oriented lines." Perception, 41, 939-949.

19) Finlayson, N.J., Remington, R.W., & Grove, P.M. (2012) "The role of presentation method and depth singletons in visual search for objects moving in depth". Journal of Vision August 24, 2012 vol. 12 no. 8 article 13 doi: 10.1167/12.8.13

20) Grove, P.M., Ashton, J., Kawachi, Y. & Sakurai, K. (2012) “Auditory transients do not affect visual sensitivity in discriminating between objective streaming and bouncing events”.Journal of Vision August 7, 2012 12(8): 5; doi:10.1167/12.8.5

21) Grove, P.M., Kawachi, Y. & Sakurai, K. (2012). "The stream/bounce effect occurs for disparity- and luminance-defined motion targets." Perception, 41, 379-388.

22) Gillam, B.J. & Grove, P.M. (2011). "Contour Entropy: A new determinant of perceiving a region as ground or a hole." Journal of Experimental Psychology: Human Perception and Performance, 37, 750-757.

23) Gillam, B.J., Grove, P.M. & Layden, J. (2010). "The role of remote closure in the perception of occlusion at T-junctions and illusory contours." Perception, 39, 145-156.

24) Grove, P.M. & Sakurai, K. (2009). "Auditory induced bounce perception persists as the probability of a motion reversal is reduced." Perception, 38, 951-965.

25) Sakurai, K., Grove, P.M. (2009) "Multisensory integration of sound with stereo 3-D visual events." IEEE 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, 2009 doi: 10.1109/3DTV.2009.5069684 

26) Grove, P.M., Ashida, H., Kaneko, H. & Ono, H. (2008). "Interocular transfer of a rotational motion aftereffect as a function of eccentricity."  Perception,37, 1152-1159.

27) Arnold, D.H., Grove, P.M. & Wallis, T.S.A. (2007). "Staying focused: A functional account of perceptual suppression during binocular rivalry." Journal of Vision, 7(7):7, 1-8,, doi:10.1167/7.7.7.

28) Grove, P.M. & Gillam, B.J. (2007). "Global patterns of binocular image differences resolve the ambiguity between stereoscopic slant and stereoscopic occlusion." Vision, 19, 15-27.

29) Grove, P.M., Sachtler, W.L. & Gillam, B.J. (2006). "Amodal completion with background determines depth from monocular gap stereopsis." Vision Research, 46, 3771-1774.

30) Grove, P.M., Brooks, K.R., Anderson, B.L. & Gillam, B.J. (2006). "Transparency and unpaired stereopsis." Vision Research, 46, 3042-3053.

31) Grove, P.M., Byrne, J.M. & Gillam, B.J. (2005). "How configurations of
binocular disparity determine whether stereoscopic slant or stereoscopic occlusion is seen." Perception, 34, 1083-1094.

32) Sachtler, W.L., Grove, P.M., von Wiegand, T.E., & Biggs, S.J. (2005). "Spatial distortions in active tactile exploration." In: H. Heft, & K.L. Marsh (Eds.), Studies in Perception and Action VIII (pp.111-114). Lawrence Erlbaum Associates.

33) Gillam, B.J. & Grove, P.M. (2004). "Slant or occlusion: global factors resolve stereoscopic ambiguity in sets of horizontal lines." Vision Research, 44, 2359-2366.

34) Grove, P.M., Ono, H. & Kaneko, H. (2003). "T-junctions and perceived slant of partially occluded surfaces." Perception, 32, 12, 1451-1464.

35) Ono, H., Lillakas, L., Grove, P.M. &Suzuki, M. (2003). Leonardo’s constraint: two opaque objects cannot be seen in the same direction. Journal of Experimental Psychology: General, 132, 2, 253–265.

36) Grove, P.M. & Regan, D. (2002). Spatial frequency discrimination in cyclopean vision. Vision Research, 42, 15, 1837-1846.

37) Grove, P.M., Gillam, B.J. & Ono, H. (2002). Content and context of monocular regions determine perceived depth in random dot, unpaired background and phantom stereograms. Vision Research, 42, 15, 1859-1870.

38) Grove, P.M., Kaneko, H. & Ono, H. (2001). The backwards inclination of a surface defined by empirical corresponding points. Perception, 30, 4, 411-429.

39) Grove, P.M., Kaneko, H. & Ono, H. (1999). The shape and distance of a surface with zero binocular disparity. Proceedings of The Sixth International Display Workshops, December 1-3, 1999, Sendai, Japan, 1075-1078.

40) Grove, P.M. & Ono, H. (1999). Ecologically invalid monocular texture leads to longer perceptual latencies in random dot stereograms. Perception, 28, 5, 627-639.

Picture of 'Dr Philip Grove'
Dr Philip Grove
Binocular visual perception. 3-D space perception. Multi sensory perception e.g. how auditory and visual information, proprioceptive, vestibular information are combined are integrated for perception of events in the world and perception of our own motion in the world.
Binocular visual perception, Perception, Vision and perception, Psychology - perception, Brian and vision, Movement perception, Multi sensory perception
Course Coordinator:
  • Semester 1, 2016
    PSYC2020 - Neuroscience for Psychologists
  • Semester 1, 2016
    PSYC1040 - Psychological Research Methodology I
  • Semester 1, 2015
    PSYC2020 - Neuroscience for Psychologists
  • Semester 1, 2015
    PSYC1040 - Psychological Research Methodology I
  • Semester 2, 2014
    PSYC2020 - Neuroscience for Psychologists
  • Semester 2, 2014
    PSYC1040 - Psychological Research Methodology I
  • Semester 2, 2013
    PSYC2020 - Neuroscience for Psychologists
  • Semester 2, 2013
    PSYC1040 - Psychological Research Methodology I
  • Semester 2, 2012
    PSYC2020 - Neuroscience for Psychologists
  • Semester 2, 2012
    PSYC1040 - Psychological Research Methodology I
  • Semester 2, 2011
    PSYC2020 - Neuroscience for Psychologists
  • Semester 2, 2011
    PSYC1040 - Psychological Research Methodology I
  • Semester 1, 2010
    PSYC1040 - Psychological Research Methodology I
  • Semester 2, 2010
    PSYC2020 - Neuroscience for Psychologists
  • Semester 1, 2009
    PSYC1040 - Psychological Research Methodology I
  • Semester 2, 2009
    PSYC1040 - Psychological Research Methodology I

Note: Coordinator roles prior to 2009 and tutor roles prior to 2006 are not included.

Research Area:

Broadly, my research is on visual perception. I am particularly interested how the brain generates a vivid representation of the 3-D world from the two 2-D images on the backs of our eyes.  If you look at an object and wink your eyes back and forth, you will notice that each of our eyes gets a slightly different view of the world. Our visual system uses these small differences in the images on our retinas to recover information about the 3-D layout of the environment. This is called stereoscopic vision and is the basis of 3-D Movies, Magic Eye stereograms, and many other 3-D visual displays. My theoretical research on stereoscopic vision aims to identify and evaluate possible sources of information contained in the two eyes' images to determine whether or not they contribute to single vision and 3-D perception.

Another interest is to examine binocular processes in the context of 3D-TV, 3D cinema, and 3D surgical displays.  Viewers frequently complain of fatigue, discomfort and visual artifacts in the displays. My lab is currently investigating two significant binocular processes that underlie major sources of viewer fatigue and image dissatisfaction: binocular fusion mechanisms underlying single/double vision; and how unmatched features in the two eyes are incorporated into a single binocular perception. We use the data from these investigations to inform modifications to 3D content production and subject the modified stereoscopic media to empirical tests of viewer comfort and satisfaction.

In addition to studying how the brain processes information from the two eyes, I am also interested in how it processes information from two or more senses. We live in a multi-sensory world filled with colours, sounds, smells, etc. How does the brain combine all these bits of information to come up with a single sensible representation? In my lab we explore cases where the brain is fooled or biased into choosing one solution over another based on what types of information we provide the observer.

Loading Publications from UQ eSpace, please wait...

QR Code for 'Dr Philip Grove'.
View QR Code for this page.
Psychology News, Events & Publications RSS 2.0 Feed School of Psychology on Facebook School of Psychology on Twitter School of Psychology on Google Plus School of Psychology on Linkedin School of Psychology on YouTube
Share this page on Facebook Share this page on Twitter Share this page on Google Plus Share this page on Linkedin